ﻻ يوجد ملخص باللغة العربية
We analyse pre-Main Sequence evolutionary tracks for low mass stars with masses $m le 1.4 msol$ based on the Baraffe et al. (1998) input physics. We also extend the recent Chabrier et al. (2000) evolutionary models based on dusty atmosphere to young brown dwarfs down to one mass of Jupiter. We analyse current theoretical uncertainties due to molecular line lists, convection and initial conditions. Simple tests on initial conditions show the high uncertainties of models at ages $simle$ 1 Myr. We find a significant sensitivity of atmosphere profiles to the treatment of convection at low gravity and $te < 4000$ K, whereas it vanishes as gravity increases. This effect adds another source of uncertainty on evolutionary tracks at very early phases. We show that at low surface gravity ($log g simle 3.5$,) the common picture of vertical Hayashi lines with constant $te$ is oversimplified. The effect of a variation of initial deuterium abundance is studied. We compare our models with evolutionary tracks available in the literature and discuss the main differences. We finally analyse to which extent current observations of young systems provide a good test for pre-Main Sequence tracks.
We discuss accretion and outflow properties of three very low-mass young stellar objects based on broad-band mid-resolution X-Shooter/VLT spectra. Our targets (FU TauA, 2M 1207-39, and Par-Lup3-4) have spectral types between M5 and M8, ages between 1
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to
Up to now, most planet search projects have concentrated on F to K stars. In order to considerably widen the view, we have stated a survey for planets of old, nearby brown dwarfs and very low mass stars. Using UVES, we have observed 26 brown dwarfs a
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 M_{odot}$ and $0.1 M_{odot}$. Based on the extrapolation