ﻻ يوجد ملخص باللغة العربية
Gravitational microlensing events of high magnification have been shown to be promising targets for detecting extrasolar planets. However, only a few events of high magnification have been found using conventional survey techniques. Here we demonstrate that high magnification events can be readily found in microlensing surveys using a strategy that combines high frequency sampling of target fields with online difference imaging analysis. We present 10 microlensing events with peak magnifications greater than 40 that were detected in real-time towards the Galactic Bulge during 2001 by MOA. We show that Earth mass planets can be detected in future events such as these through intensive follow-up observations around the event peaks. We report this result with urgency as a similar number of such events are expected in 2002.
We show that Earth mass planets orbiting stars in the Galactic disk and bulge can be detected by monitoring microlensed stars in the Galactic bulge. The star and its planet act as a binary lens which generates a lightcurve which can differ substantia
The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here we ask if we could distinguish rocky planets with recent major volcanism by remo
Microlensing has proven to be a valuable tool to search for extrasolar planets of Jovian- to Super-Earth-mass planets at orbits of a few AU. Since planetary signals are of very short duration, an intense and continuous monitoring is required. This is
Due to their extremely small luminosity compared to the stars they orbit, planets outside our own Solar System are extraordinarily difficult to detect directly in optical light. Careful photometric monitoring of distant stars, however, can reveal the
We investigate a new approach to the detection of companions to extrasolar planets beyond the transit method. We discuss the possibility of the existence of binary planets. We develop a method based on the imaging of a planet-companion as an unreso