ﻻ يوجد ملخص باللغة العربية
Using high-resolution imaging with the Hubble Space Telescope, we study the Large Magellanic Cloud HII region N160A and uncover several striking features of this complex massive star-forming site. The two compact high excitation HII blobs (HEBs) A1 and A2 are for the first time resolved and their stellar content and morphology is revealed. A1, being of higher excitation, is powered by a single massive star whose strong wind has created a surrounding bubble. A2 harbors several exciting stars enshrouded inside large quantities of dust. The whole N160A nebula is energized by three star clusters for which we obtain photometry and study their color-magnitude diagram. The HII region is particularly dusty, with extinction values reaching an A_v~2.5 mag in the visible, and it is separated from the molecular cloud by an outstanding ionization front. A previously detected infrared young stellar object is also accurately located with respect to the HII region.
To show the importance of high-spatial resolution observations of HII regions when compared with observations obtained with larger apertures such as ISO, we present mid-infrared spectra of two Magellanic Cloud HII regions, N88A and N160A. We obtained
We present numerical radiation-hydrodynamic simulations of cometary HII regions for a number of champagne flow and bowshock models. For the champagne flow models we study smooth density distributions with both steep and shallow gradients. We also con
We present a study of the LMC compact HII region N11A using Hubble Space Telescope imaging observations which resolve N11A and reveal its unknown nebular and stellar features. The presence of a sharp ionization front extending over more than 4 (1 pc)
We report on the detection of optically thick free-free radio sources in the galaxies M33, NGC 253, and NGC 6946 using data in the literature. We interpret these sources as being young, embedded star birth regions, which are likely to be clusters of
The four HII regions in the Sgr A East complex: A, B, C, and D, represent evidence of recent massive star formation in the central ten parsecs. Using Paschen-alpha images taken with HST and 8.4 GHz VLA data, we construct an extinction map of A-D, and briefly discuss their morphology and location.