ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Properties of High Redshift Clusters

312   0   0.0 ( 0 )
 نشر من قبل J. Patrick Henry
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Patrick Henry




اسأل ChatGPT حول البحث

We describe the ensemble X-ray properties of high redshift clusters with emphasis on changes with respect to the local population. Cluster X-ray luminosity evolution is detected in five nearly independent surveys. The relevant issue now is characterizing this evolution. Cluster temperature evolution provides constraints on the dark matter and dark energy content of the universe. These constraints are complementary to and in agreement with those of the cosmic microwave background and supernovae, showing that the present universe is dominated by a dark energy. X-ray images show that most z > 0.75 clusters are not relaxed, hinting that the cluster formation epoch is z ~ 1.



قيم البحث

اقرأ أيضاً

94 - C. A. Collins 1997
We report on the first results from a redshift survey of a flux-limited sample of X-ray clusters selected serendipitously from the ROSAT PSPC data archive. We spectroscopically confirm 15 clusters in the range 0.3 < z < 0.7, to a flux limit of ~ 3.9 x 10^-14 erg s^-1 cm^-2, over a survey area of 17.2 deg^2. The surface density of clusters in our survey is 2.0 (+0.4,-0.3) deg^-2, in good agreement with the number density of cluster candidates detected using algorithms designed to search for very extended sources. The number of clusters detected between 0.3 < z < 0.7 is consistent with a prediction based on a simple extrapolation of the local X-ray cluster luminosity function, which indicates that over this redshift range no significant evolution in the cluster population has taken place. These results are in conflict with recent claims that the number density of X-ray clusters found in deep ROSAT PSPC pointings evolves rapidly beyond z = 0.3.
159 - M. Branchesi 2007
The current generation of X-ray observatories like Chandra allows studies with very fine spatial details. It is now possible to resolve X-ray point sources projected into the cluster diffuse emission and exclude them from the analysis to estimate the ``correct X-ray observables. In order to verify the incidence of point sources on the cluster thermal emission and to evaluate the impact of their non-thermal emission on the determination of cluster properties, we used a sample of 18 high-z (0.25 < z < 1.01) clusters from the Chandra archive. We performed a detailed analysis of the cluster properties and compared the changes observed in the X-ray observables, like temperature and luminosity or their inter-relation, when one keeps the point sources in the analysis. The point sources projected into the cluster extended emission affect the estimates of cluster temperature or luminosity considerably (up to 13% and 17% respectively). These percentages become even larger for clusters with z > 0.7 where temperature and luminosity increase up to 24% and 22%, respectively. Thus the point sources should be removed to correctly estimate the cluster properties. However the inclusion of the point sources does not impact significantly the slope and normalization of the L-T relationship since for each cluster the correction to be applied to T and L produces a moderate shift in the L-T plane almost parallel to the best-fit of the ``correct L-T relation.
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness than those of past samples of high-redshift RLQs studied in the X-ray regime. Our spectral analyses show power-law X-ray continua with a mean photon index, Gamma =1.74 +/- 0.11, that is consistent with measurements of lower redshift RLQs. These continua are likely dominated by jet-linked X-ray emission, and they follow the expected anti-correlation between photon index and radio loudness. We find no evidence of iron Kalpha ~ emission lines or Compton-reflection continua. Our data also constrain intrinsic X-ray absorption in these RLQs. We find evidence for significant absorption (N_H ~ 10^22 cm^-2) in one RLQ of our sample (SDSS J0011+1446); the incidence of X-ray absorption in our sample appears plausibly consistent with that for high-redshift RLQs that have higher values of radio loudness. In the Chandra observation of PMN J221-2719 we detect apparent extended (~ 14 kpc) X-ray emission that is most likely due to a jet; the X-ray luminosity of this putative jet is ~2% that of the core. The analysis of a 4.9 GHz VLA image of PMN J221-2719 reveals a structure that matches the X-ray extension found in this source. We also find evidence for long-term (450-460 days) X-ray variability by 80-100% in two of our targets.
The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to better understand the broad-band spectral energy distributions (SEDs) of these sources from radio to X-rays, with particular emphasis on infrared properties. The ISO sample includes a wide variety of AGN types and spans a large redshift range. Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars; and 22 hard X-ray selected sources. The X-ray selected AGN show a wide range of IR continuum shapes, extending to cooler colors than the optical/radio sample of Elvis et al. (1994). Where a far-IR turnover is clearly observed, the slopes are < 2.5 in all but one case so that non-thermal emission remains a possibility. The highest redshift quasars show extremely strong, hot IR continua requiring ~ 100 solar masses of 500 - 1000 Kelvin dust with ~ 100 times weaker optical emission. Possible explanations for these unusual properties include: reflection of the optical light from material above/below a torus; strong obscuration of the optical continuum; or an intrinsic deficit of optical emission.
We present an extensive X-ray spectral analysis of the cores of 19 FRII sources in the redshift range 0.5<z<1.0 which were selected to be matched in isotropic radio power. The sample consists of 10 radio galaxies and 9 quasars. We compare our results with the expectations from a unification model that ascribes the difference between these two types of sources to the viewing angle to the line of sight, beaming and the presence of a dust and gas torus. We find that the spectrum of all the quasars can be fitted with a single power law, and that the spectral index flattens with decreasing angle to the line of sight. We interpret this as the effect of increasingly dominant inverse Compton X-ray emission, beamed such that the jet emission outshines other core components. For up to 70 per cent of the radio galaxies we detect intrinsic absorption; their core spectra are best fitted with an unabsorbed steep power law of average spectral index $Gamma=2.1$ and an absorbed power law of spectral index Gamma=1.6, which is flatter than that observed for radio-quiet quasars. We further conclude that the presence of a jet affects the spectral properties of absorbed nuclear emission in AGN. In radio galaxies, any steep-spectrum component of nuclear X-ray emission, similar to that seen in radio-quiet quasars, must be masked by a jet or by jet-related emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا