ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Properties of High Redshift and X-ray Selected AGN Samples

74   0   0.0 ( 0 )
 نشر من قبل Eric J. Hooper
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Belinda J. Wilkes




اسأل ChatGPT حول البحث

The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to better understand the broad-band spectral energy distributions (SEDs) of these sources from radio to X-rays, with particular emphasis on infrared properties. The ISO sample includes a wide variety of AGN types and spans a large redshift range. Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars; and 22 hard X-ray selected sources. The X-ray selected AGN show a wide range of IR continuum shapes, extending to cooler colors than the optical/radio sample of Elvis et al. (1994). Where a far-IR turnover is clearly observed, the slopes are < 2.5 in all but one case so that non-thermal emission remains a possibility. The highest redshift quasars show extremely strong, hot IR continua requiring ~ 100 solar masses of 500 - 1000 Kelvin dust with ~ 100 times weaker optical emission. Possible explanations for these unusual properties include: reflection of the optical light from material above/below a torus; strong obscuration of the optical continuum; or an intrinsic deficit of optical emission.

قيم البحث

اقرأ أيضاً

Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we ch ose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
66 - Iskra Strateva 2005
Using a sample of 228 optically selected Active Galactic Nuclei (AGNs) in the 0.01-6.3 redshift range with a high fraction of X-ray detections (81-86%), we study the relation between rest-frame UV and soft X-ray emission and its evolution with cosmic time. The majority of the AGNs in our sample (155 objects) have been selected from the Sloan Digital Sky Survey (SDSS) in an unbiased way, rendering the sample results representative of all SDSS AGNs. The addition of two heterogeneous samples of 36 high-redshift and 37 low-redshift AGNs further supports and extends our conclusions. We confirm that the X-ray emission from AGNs is correlated with their UV emission, and that the ratio of the monochromatic luminosity emitted at 2keV compared to 2500A decreases with increasing luminosity (a_ox=-0.136 l_uv+2.616, where l_uv is in log units), but does not change with cosmic time. These results apply to intrinsic AGN emission, as we correct or control for the effects of the host galaxy, UV/X-ray absorption, and any X-ray emission associated with radio emission in AGNs. We investigate a variety of systematic errors and can thereby state with confidence that (1) the a_ox-l_uv anti-correlation is real and not a result of accumulated systematic errors and (2) any a_ox dependence on redshift is negligible in comparison. We provide the best quantification of the a_ox-l_uv relation to date for normal radio-quiet AGNs; this should be of utility for researchers pursuing a variety of studies.
109 - P. Eisenhardt 2000
Recent results on the incidence of red galaxies in a > 100 square arcminute field galaxy survey to K=20 and a K=22 survey of the Hubble Deep Field are presented. We argue that a simple photometric redshift indicator, based on J-K color and supported by spectroscopic results obtained with Keck, gives a reliable lower limit of ~25% for the fraction of z>1 galaxies in the 100 square arcminute survey. This fraction is substantially higher than found in previous smaller samples, and is at least as consistent with predictions for pure luminosity evolution as with those for hierarchical models. The same technique yields a very low fraction for the HDF, which appears to be unusually underabundant in red galaxies.
81 - Paolo Ciliegi 1996
Using a sample of 63 AGNs extracted from the $Einstein$ Extended Medium Sensitivity Survey (EMSS), we study the X-ray spectral properties of X-ray selected AGN in the 0.1$-$2.4 keV ROSAT band. These objects are all the EMSS AGN detected with more tha n 300 net counts in ROSAT PSPC images available from the public archive (as of May 31, 1995). A Maximum-Likelihood analysis is used to find the mean power-law spectral index $<alpha_p>$ and the intrinsic dispersion $sigma_p$. We find $<alpha_p>$=1.42 with $sigma_p$=0.44. This value is significantly steeper ($Delta alpha sim$0.4) than the mean $Einstein$/IPC spectral index obtained applying the ML analysis on the whole sample of EMSS AGN. This result shows that the soft excess already noted in optically selected AGN is present also in X-ray selected AGN. The relatively high value obtained for the intrinsic dispersion confirms that in the soft band AGN are characterized by a variety of spectral indices and the increase with respect to results obtained from the analysis of Einstein data ($Delta sigma_p sim$0.16) suggests a further broadening of the spectral index distribution as one moves to softer energies. A comparison between the mean spectral index of Radio-quiet and Radio-loud subsamples shows that the mean index of the RL sample is flatter than that of RQ, both in the IPC ($Delta alpha sim$0.3) and in the PSPC ($Delta alpha sim$0.4) data. This suggests that the additional X-ray component in RL AGN dominates the X-ray emission of RL AGN over almost two decades of energy ($sim$0.1$-$10 keV).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا