ﻻ يوجد ملخص باللغة العربية
We present a chemical composition analysis of 36 giant stars in mildly metal-poor globular cluster M5. In comparing the M5 results to those obtained in M4, a cluster previously considered to be a ``twin in age, metallicity and chemical composition, we find large star-to-star variations in the abundances of elements sensitive to proton-capture nucleosynthesis, similar [Fe/H] values, but factor of two differences in some alpha-capture, odd-Z and slow neutron-capture process elements. Among stars in globular clusters, apparently there are no definitive ``single values of [el/Fe] at a given [Fe/H] for many important elements.
We present a chemical composition analysis of 36 giant stars in the mildly metal-poor globular cluster M5 (NGC 5904). The analysis makes use of high resolution data acquired at the Keck I telescope as well as a re-analysis of high resolution spectra
We present a chemical composition analysis of 36 giants in the nearby mildy metal-poor (<[Fe/H]> = -1.18) CN-bimodal globular cluster M4. Confronted with a cluster that has large and variable interstellar extinction across the cluster face, we combin
A non-LTE analysis of K I resonance lines at 7664.91 and 7698.97 A was carried out for 15 red giants belonging to three globular clusters of different metallicity (M 4, M 13, and M 15) along with two reference early-K giants (rho Boo and alpha Boo),
We use abundances of Ca, O, Na, Al from high resolution UVES spectra of 200 red giants in 17 globular clusters (GCs) to investigate the correlation found by Lee et al. (2009) between chemical enrichment from SN II and star-to-star variations in light
Heavy elements, those produced by neutron-capture reactions, have traditionally shown no star-to-star dispersion in all but a handful of metal-poor globular clusters (GCs). Recent detections of low [Pb/Eu] ratios or upper limits in several metal-poor