ترغب بنشر مسار تعليمي؟ اضغط هنا

Potassium Abundances in Red Giants of Mildly to Very Metal-Poor Globular Clusters

112   0   0.0 ( 0 )
 نشر من قبل Yoichi Takeda
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A non-LTE analysis of K I resonance lines at 7664.91 and 7698.97 A was carried out for 15 red giants belonging to three globular clusters of different metallicity (M 4, M 13, and M 15) along with two reference early-K giants (rho Boo and alpha Boo), in order to check whether the K abundances are uniform within a cluster and to investigate the behavior of [K/Fe] ratio at the relevant metallicity range of -2.5 <[Fe/H] < -1. We confirmed that [K/H] (as well as [Fe/H]) is almost homogeneous within each cluster to a precision of < ~0.1 dex, though dubiously large deviations are exceptionally seen for two peculiar stars showing signs of considerably increased turbulence in the upper atmosphere. The resulting [K/Fe] ratios are mildly supersolar by a few tenths of dex for three clusters, tending to gradually increase from ~+0.1-0.2 at [Fe/H] ~-1 to ~+0.3 at [Fe/H] ~ -2.5. This result connects reasonably well with the [K/Fe] trend of disk stars (-1 < [Fe/H]) and that of extremely metal-poor stars (-4 <[Fe/H] < -2.5). That is, [K/Fe] appears to continue a gradual increase from [Fe/H]~0 toward a lower metallicity regime down to [Fe/H]~-3, where a broad maximum of [K/Fe]~+0.3-0.4 is attained, possibly followed by a slight downturn at [Fe/H]<~-3.



قيم البحث

اقرأ أيضاً

The globular cluster HP~1 is projected at only 3.33 degrees from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe /H]~-1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y , Zr, Ba, La, and Eu.} High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP~1 were obtained with the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of FeI and FeII. We confirm a mean metallicity of [Fe/H] = -1.06~0.10, by adding the two stars that were previously analyzed in HP~1. The alpha-elements O and Mg are enhanced by about +0.3<[O,Mg/Fe]<+0.5 dex, Si is moderately enhanced with +0.15<[Si/Fe]<+0.35dex, while Ca and Ti show lower values of -0.04<[Ca,Ti/Fe]<+0.28dex. The r-element Eu is also enhanced with [Eu/Fe]~+0.4, which together with O and Mg is indicative of early enrichment by type II supernovae. Na and Al are low, but it is unclear if Na-O are anticorrelated. The heavy elements are moderately enhanced, with -0.20<[La/Fe]<+0.43dex and 0.0<[Ba/Fe]<+0.75~dex, which is compatible with r-process formation. The spread in Y, Zr, Ba, and La abundances, on the other hand, appears to be compatible with the spinstar scenario or other additional mechanisms such as the weak r-process.
135 - Inese I. Ivans 1999
We present a chemical composition analysis of 36 giants in the nearby mildy metal-poor (<[Fe/H]> = -1.18) CN-bimodal globular cluster M4. Confronted with a cluster that has large and variable interstellar extinction across the cluster face, we combin ed traditional spectroscopic abundance methods with modifications to line-depth ratio techniques to determine the atmospheric parameters of our stars. We derive a total-to-selective extinction ratio of 3.4 and an average <E(B-V)> reddening of 0.33 which is significantly lower than that estimated by using the dust maps made by Schlegel et al. (1998). Abundance ratios for Sc, Ti, V, Ni, & Eu are typical of halo field and cluster stars. However, Si, Al, Ba, & La are overabundant with respect to what is seen in other globular clusters of similar metallicity. Superimposed on the primordial abundance distribution is evidence for the existence of proton-capture synthesis. We recover some of the C, N, O, Na, Mg, & Al abundance swings and correlations found in other more metal-poor globular clusters but the range of variation is muted. The Al enhancements appear to be from the destruction of 25,26Mg, not 24Mg. The C+N+O abundance sum is constant to within the observational errors, and agrees with the C+N+O total that might be expected for M4 stars at birth. The M4 AGB stars have C,N,O abundances that show less evidence for proton- capture nucleosynthesis than is found in the less-evolved stars of the RGB. Deeply-mixed stars of the RGB, subsequent to the helium core flash, might take up residence on the blue end of the HB, and thus fail to evolve back to the AGB but reasons for skepticism concerning this scenario are noted.
Unevolved metal poor stars are the witness of the early evolution of the Galaxy. The determination of their detailed chemical composition is an important tool to understand the chemical history of our Galaxy. The study of their chemical composition c an also be used to constrain the nucleosynthesis of the first generation of supernovae that enriched the interstellar medium. The aim is to observe a sample of extremely metal poor stars (EMP stars) candidates selected from SDSS DR12 release and determine their chemical composition. We obtained high resolution spectra of a sample of five stars using HDS on Subaru telescope and used standard 1D models to compute the abundances. The stars we analysed have a metallicity [Fe/H] between -3.50 dex and -4.25 dex . We confirm that the five metal poor candidates selected from low resolution spectra are very metal poor. We present, the discovery of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H]= -4.25 dex (SDSS~J1050032.34$-$241009.7). We measured in this star an upper limit of lithium ( log(Li/H) <= 2.0. We found that the 4 most metal poor stars of our sample have a lower lithium abundance than the Spite plateau lithium value. We obtain upper limits for carbon in the sample of stars. None of them belong to the high carbon band. We measured abundances of Mg and Ca in most of the stars and found three new alpha-poor stars.
411 - Inese I. Ivans 2001
We present a chemical composition analysis of 36 giant stars in mildly metal-poor globular cluster M5. In comparing the M5 results to those obtained in M4, a cluster previously considered to be a ``twin in age, metallicity and chemical composition, w e find large star-to-star variations in the abundances of elements sensitive to proton-capture nucleosynthesis, similar [Fe/H] values, but factor of two differences in some alpha-capture, odd-Z and slow neutron-capture process elements. Among stars in globular clusters, apparently there are no definitive ``single values of [el/Fe] at a given [Fe/H] for many important elements.
220 - Inese I. Ivans 2001
We present a chemical composition analysis of 36 giant stars in the mildly metal-poor globular cluster M5 (NGC 5904). The analysis makes use of high resolution data acquired at the Keck I telescope as well as a re-analysis of high resolution spectra acquired for an earlier study at Lick Observatory. We employed two analysis techniques: one, adopting standard spectroscopic constraints, and two, adopting an analysis consistent with the non-LTE precepts as recently described by Thevenin & Idiart. The abundance ratios we derive for magnesium, silicon, calcium, scandium, titanium, vanadium, nickel, barium and europium in M5 show no significant abundance variations and the ratios are comparable to those of halo field stars. However, large variations are seen in the abundances of oxygen, sodium and aluminum, the elements that are sensitive to proton-capture nucleosynthesis. In comparing the abundances of M5 and M4 (NGC 6121), another mildly metal-poor globular cluster, we find that silicon, aluminum, barium and lanthanum are overabundant in M4 with respect to what is seen in M5, confirming and expanding the results of previous studies. In comparing the abundances between these two clusters and others having comparable metallicities, we find that the anti-correlations observed in M5 are similar to those found in more metal-poor clusters, M3, M10 and M13, whereas the behavior in M4 is more like that of the more metal-rich globular cluster M71. We conclude that among stars in Galactic globular clusters, there is no definitive ``single value of [el/Fe] at a given [Fe/H] for at least some alpha-capture, odd-Z and slow neutron-capture process elements, in this case, silicon, aluminum, barium and lanthanum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا