ترغب بنشر مسار تعليمي؟ اضغط هنا

Shocking Clouds in the Cygnus Loop

78   0   0.0 ( 0 )
 نشر من قبل N. A. Levenson
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. A. Levenson




اسأل ChatGPT حول البحث

With Hubble Space Telescope Wide-Field Planetary Camera 2 observations of the Cygnus Loop supernova remnant, we examine the interaction of an interstellar cloud with the blast wave on physical scales of 10^15 cm. The shock front is distorted, revealing both edge-on and face-on views of filaments and diffuse emission, similar to those observed on larger scales at lower resolution. We identify individual shocks in the cloud of density n~15 cm^-3 having velocity v_s~170 km/s. We also find the morphologically unusual diffuse Balmer-dominated emission of faster shocks in a lower-density region. The obstacle diffracts these shocks, so they propagate at oblique angles with respect to the primary blast wave. The intricate network of diffuse and filamentary H alpha emission arises during the early stage of interaction between the cloud and blast wave, demonstrating that complex shock propagation and emission morphology occur before the onset of instabilities that destroy clouds completely.

قيم البحث

اقرأ أيضاً

We present the C III {lambda}977, O VI {lambda}{lambda}1032, 1038 and N IV] {lambda}1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 {AA} are resolved into two separate emission lines, whose intensity demonstrates a relatively high Si IV region predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images, reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities; and the effects of resonance scattering, X-ray emitting gas, and non-radiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.
We analyzed the metal distribution of the Cygnus Loop using 14 and 7 pointings observation data obtained by the textit{Suzaku} and the textit{XMM-Newton} observatories. The spectral analysis shows that all the spectra are well fitted by the two-$kT_e $ non-equilibrium ionization plasma model as shown by the earlier observations. From the best-fit parameters of the high-$kT_e$ component, we calculated the emission measures about various elements and showed the metal distribution of the ejecta component. We found that the distributions of Si and Fe are centered at the southwest of the geometric center toward the blow-out region. From the best-fit parameters, we also estimated the progenitor mass of the Cygnus Loop from our field of view and the metal rich region with a radius of 25 arcmin from the metal center. The result from the metal circle is similar to that from our entire FOV, which suggests the mixing of the metal. From the results, we estimated the mass of the progenitor star at 12-15MO.
We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of vie w into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and the high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and the northeast from the center. We estimated the former thin shell region to be 1.3 degrees in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.
78 - Satoru Katsuda 2012
We report on a discovery of a diffuse nebula containing a pointlike source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the pointlike source ar e well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F_nebula/F_pointlike ~ 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1e31 (d/540pc)^2 ergs/s, where d is the distance to the Loop. This implies a spin-down loss-energy E_dot ~ 2.6e35 (d/540pc)^2 ergs/s. The location of the neutron star candidate, ~2 degrees away from the geometric center of the Loop, implies a high transverse velocity of ~1850 (d/540pc)(t/10kyr)^{-1} km/s, assuming the currently accepted age of the Cygnus Loop.
We have observed the south-east (SE) limb of the Cygnus Loop with {it Suzaku}. Our spatially-resolved spectroscopic study shows that a one-$kT_mathrm{e}$ non-equilibrium ionization model represents our spectra fairly well. We find that the metal abun dances obtained are all depleted relative to the solar values with a positional dependency along the radial direction of the Cygnus Loop. The abundances in the very edge of the limb shows about half the solar value, whereas other regions inside the Loop show about 0.2 times the solar value which has been believed as a typical value for the Cygnus Loop limb. The enhanced abundance in the very edge in the SE limb is quite similar to that found in the north-east (NE) limb of the Loop, and thus this is another evidence of abundance inhomogeneity in the limb regions of the Loop. The radio map shows a quite different feature: the NE limb is in the radio bright region while the SE limb shows almost no radio. Therefore, the metal abundance variation in the SE limb can not attribute to the non-thermal emission. The abundance inhomogeneity as well as the metal depletion down to 0.2 times the solar value still remain an open question.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا