ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

124   0   0.0 ( 0 )
 نشر من قبل Satoru Katsuda
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Satoru Katsuda




اسأل ChatGPT حول البحث

We report on a discovery of a diffuse nebula containing a pointlike source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the pointlike source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F_nebula/F_pointlike ~ 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1e31 (d/540pc)^2 ergs/s, where d is the distance to the Loop. This implies a spin-down loss-energy E_dot ~ 2.6e35 (d/540pc)^2 ergs/s. The location of the neutron star candidate, ~2 degrees away from the geometric center of the Loop, implies a high transverse velocity of ~1850 (d/540pc)(t/10kyr)^{-1} km/s, assuming the currently accepted age of the Cygnus Loop.



قيم البحث

اقرأ أيضاً

We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
Motivated by recent detections of pulsar wind nebulae in very-high-energy (VHE) gamma rays, a systematic search for VHE gamma-ray sources associated with energetic pulsars was performed, using data obtained with the H.E.S.S. (High Energy Stereoscopic System) instrument. The search for VHE gamma-ray sources near the pulsar PSR J1718-3825 revealed the new VHE gamma-ray source HESS J1718-385. We report on the results from the HESS data analysis of this source and on possible associations with the pulsar and at other wavelengths. We investigate the energy spectrum of HESS J1718-385 that shows a clear peak. This is only the second time a VHE gamma-ray spectral maximum from a cosmic source was observed, the first being the Vela X pulsar wind nebula.
We present new high-resolution radio and X-ray observations of the supernova remnant (SNR) B0453-685 in the Large Magellanic Cloud, carried out with the Australia Telescope Compact Array and the Chandra X-ray Observatory respectively. Embedded in the SNR shell is a compact central nebula producing both flat-spectrum polarized radio emission and non-thermal X-rays; we identify this source as a pulsar wind nebula (PWN) powered by an unseen central neutron star. We present a new approach by which the properties of a SNR and PWN can be used to infer upper limits on the initial spin period and surface magnetic field of the unseen pulsar, and conclude that this star was an initial rapid rotator with current properties similar to those of the Vela pulsar. As is the case for other similarly-aged sources, there is currently an interaction taking place between the PWN and the SNRs reverse shock.
In the last decade ground-based Imaging Atmospheric Cherenkov Telescopes have discovered roughly 30 pulsar wind nebulae at energies above 100 GeV. We present first results from a leptonic emission code that models the spectral energy density of a pul sar wind nebula by solving the Fokker-Planck transport equation and calculating inverse Compton and synchrotron emissivities. Although models such as these have been developed before, most of them model the geometry of a pulsar wind nebula as that of a single sphere. We have created a time-dependent, multi-zone model to investigate changes in the particle spectrum as the particles diffuse through the pulsar wind nebula, as well as predict the radiation spectrum at different positions in the nebula. We calibrate our new model against a more basic previous model and fit the observed spectrum of G0.9+0.1, incorporating data from the High Energy Stereoscopic System as well as radio and X-ray experiments.
132 - Aya Bamba 2009
The results from a systematic study of eleven pulsar wind nebulae with a torus structure observed with the Chandra X-ray observatory are presented. A significant observational correlation is found between the radius of the tori, r, and the spin-down luminosity of the pulsars, Edot. A logarithmic linear fit between the two parameters yields log r = (0.57 +- 0.22) log Edot -22.3 +- 8.0 with a correlation coefficient of 0.82, where the units of r and Edot are pc and ergs s^-1, respectively. The value obtained for the Edot dependency of r is consistent with a square root law, which is theoretically expected. This is the first observational evidence of this dependency, and provides a useful tool to estimate the spin-down energies of pulsars without direct detections of pulsation. Applications of this dependency to some other samples are also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا