ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sunyaev-Zeldovich Effect: Results and Future Prospects

209   0   0.0 ( 0 )
 نشر من قبل John E. Carlstrom
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sunyaev-Zeldovich effect (SZE) provides a powerful tool for cosmological studies. Through recent advances in instrumentation and observational techniques it is now possible to obtain high quality measurements of the effect toward galaxy clusters. The analysis of the SZE toward a few tens of clusters has already led to interesting constraints on the Hubble constant and the mass density of the universe. In the near future, instruments exploiting the redshift independence of the SZE will be used to conduct deep surveys for galaxy clusters providing detailed information on the growth of large scale structure, tests of cosmological models and tight constraints on the cosmological parameters that describe our universe. In this review we provide an overview of the SZE and its use for cosmological studies. We summarize the current state of observations and the constraints on cosmological parameters already obtained and we discuss the power of using the SZE for future deep cluster surveys.


قيم البحث

اقرأ أيضاً

We have constructed all-sky y-maps of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite survey. These reconstructed y-map s are delivered as part of the Planck 2015 release. The y-maps are characterised in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales and CIB and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20-600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.
We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Plan ck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 $sigma$, (ii) 3 $sigma$, and (iii) 4 $sigma$. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is $A_{rm tSZ-CIB}= 1.2pm0.3$. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
100 - E. Pierpaoli 2004
We present a new method for component separation aimed to extract Sunyaev-Zeldovich (SZ) galaxy clusters from multifrequency maps of Cosmic Microwave Background (CMB) experiments. This method is designed to recover non-Gaussian, spatially localized a nd sparse signals. We first characterize the cluster non-Gaussianity by studying it on simulated SZ maps. We the apply our estimator on simulated observations of the Planck and Atacama Cosmology Telescope (ACT) experiments. The method presented here outperforms multi-frequency Wiener filtering both in the reconstructed average intensity for given input and in the associated error. In the absence of point source contamination, this technique reconstructs the ACT (Planck) bright (big) clusters central y parameter with an intensity which is about 84 (43) per cent of the original input value. The associated error in the reconstruction is about 12 and 27 per cent for the 50 (12) ACT (Planck) clusters considered. For ACT, the error is dominated by beam smearing. In the Planck case the error in the reconstruction is largely determined by the noise level: a noise reduction by a factor 7 would imply almost perfect reconstruction and 10 per cent error for a large sample of clusters. We conclude that the selection function of Planck clusters will strongly depend on the noise properties in different sky regions, as well as from the specific cluster extraction method assumed.
86 - Ian G. McCarthy 2003
X-ray observations of an entropy floor in nearby groups and clusters of galaxies offer evidence that important non-gravitational processes, such as radiative cooling and/or preheating, have strongly influenced the evolution of the intracluster medium (ICM). We examine how the presence of an entropy floor modifies the thermal Sunyaev-Zeldovich (SZ) effect. A detailed analysis of scaling relations between X-ray and SZ effect observables and also between the two primary SZ effect observables is presented. We find that relationships between the central Compton parameter and the temperature or mass of a cluster are extremely sensitive to the presence of an entropy floor. The same is true for correlations between the integrated Compton parameter and the X-ray luminosity or the central Compton parameter. In fact, if the entropy floor is as high as inferred in recent analyses of X-ray data, a comparison of these correlations with both current and future SZ effect observations should show a clear signature of this excess entropy. Moreover, because the SZ effect is redshift-independent, the relations can potentially be used to track the evolution of the cluster gas and possibly discriminate between the possible sources of the excess entropy. To facilitate comparisons with observations, we provide analytic fits to these scaling relations.
370 - D. Puy , L. Grenacher 2000
In this paper we investigate the Sunyaev-Zeldovich (SZ) effect and the X-ray surface brightness for clusters of galaxies with a non-spherical mass distribution. In particular, we consider the influence of the shape and the finite extension of a clust er as well as of a polytropic thermal profile on the Compton parameter, the X-ray surface brightness and on the determination of the Hubble constant. We find that the the non-inclusion of such effects can induce errors up to 30 per cent in the various parameters and in particular on the Hubble constant value, when compared with results obtained under the isothermal, infinitely extended and spherical shape assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا