ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal shocks in the jets of radio-loud quasars

304   0   0.0 ( 0 )
 نشر من قبل Davide Lazzati
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The central engine causing the production of jets in radio sources may work intermittently, accelerating shells of plasma with different mass, energy and velocity. Faster but later shells can then catch up slower earlier ones. In the resulting collisions shocks develop, converting some of the ordered bulk kinetic energy into magnetic field and random energy of the electrons which then radiate. We propose that this internal shock scenario, which is the scenario generally thought to explain the observed gamma-ray burst radiation, can work also for radio sources in general, and for blazar in particular. We investigate in detail this idea, simulating the birth, propagation and collision of shells, calculating the spectrum produced in each collision, and summing the locally produced spectra from those regions of the jet which are simultaneously active in the observers frame. We can thus construct snapshots of the overall spectral energy distribution as well as time dependent spectra and light curves. This allows us to characterize the predicted variability at any frequency, study correlations among the emission at different frequencies, specify the contribution of each region of the jet to the total emission, find correlations between flares at high energies and the birth of superluminal radio knots and/or radio flares. The model has been applied to qualitatively reproduce the observed properties of 3C 279. Global agreement in terms of both spectra and temporal evolution is found. In a forthcoming work, we explore the constraints which this scenario sets on the initial conditions of the plasma injected in the jet and the shock dissipation for different classes of blazars.

قيم البحث

اقرأ أيضاً

371 - Maddalena Spada 2000
The development of instabilities leading to the formation of internal shocks is expected in the relativistic outflows of both gamma-ray bursts and blazars. The shocks heat the expanding ejecta, generate a tangled magnetic field and accelerate leptons to relativistic energies. While this scenario has been largely considered for the origin of the spectrum and the fast variability in gamma-ray bursts, here we consider it in the contest of relativistic jets of blazars. We calculate the expected spectra, light curves and time correlations between emission at different wavelengths. The dynamical evolution of the wind explains the minimum distance for dissipation (~10^{17} cm) to avoid $gamma$--$gamma$ collisions and the low radiative efficiency required to transport most of the kinetic energy to the extended radio structures. The internal shock model allows to follow the evolution of changes, both dynamical and radiative, along the entire jet, from the inner part, where the jet becomes radiative and emits at high energies ($gamma$-jet), to the parsec scale, where the emission is mostly in the radio band (radio-jet). We have produced some animations that can be found at http://www.merate.mi.astro.it/~lazzati/3C279/, in which the temporal and spectral informations are shown together.
We have obtained multi-colour imaging of a representative, statistically complete sample of low-frequency selected (S_408MHz > 0.95Jy) radio loud quasars at intermediate (0.6 < z < 1.1) redshifts. These sources are found in a variety of environments, from the field through to rich clusters. We show that statistical measures of environmental richness, based upon single-band observations are inadequate at these redshifts for a variety of reasons. Environmental richness seems correlated with the size and morphology of the radio source, as expected if the energy density in the radio lobes is approximately the equipartition value and the lobes are in pressure equilbrium with a surrounding intragroup/cluster medium. Selecting on radio size therefore efficiently selects dense galactic sytems at these redshifts.
158 - O. Hervet , Z. Meliani , A. Zech 2017
The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral lum inosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
We conducted radio detection observations at 8.4 GHz for 22 radio-loud broad absorption line (BAL) quasars, selected from the Sloan Digital Sky Survey (SDSS) Third Data Release, by a very-long-baseline interferometry (VLBI) technique. The VLBI instru ment we used was developed by the Optically ConnecTed Array for VLBI Exploration project (OCTAVE), which is operated as a subarray of the Japanese VLBI Network (JVN). We aimed at selecting BAL quasars with nonthermal jets suitable for measuring their orientation angles and ages by subsequent detailed VLBI imaging studies to evaluate two controversial issues of whether BAL quasars are viewed nearly edge-on, and of whether BAL quasars are in a short-lived evolutionary phase of quasar population. We detected 20 out of 22 sources using the OCTAVE baselines, implying brightness temperatures greater than 10^5 K, which presumably come from nonthermal jets. Hence, BAL outflows and nonthermal jets can be generated simultaneously in these central engines. We also found four inverted-spectrum sources, which are interpreted as Doppler-beamed, pole-on-viewed relativistic jet sources or young radio sources: single edge-on geometry cannot describe all BAL quasars. We discuss the implications of the OCTAVE observations for investigations for the orientation and evolutionary stage of BAL quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا