ترغب بنشر مسار تعليمي؟ اضغط هنا

Shocks in relativistic transverse stratified jets, a new paradigm for radio-loud AGN

159   0   0.0 ( 0 )
 نشر من قبل Olivier Hervet
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.



قيم البحث

اقرأ أيضاً

We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-lo ud Seyfert-1 AGN. The ionised winds in these AGN are parameterised through high-resolution X-ray spectroscopy and photoionisation modelling. We discover a significant inverse correlation between the column density NH of the ionised wind and the radio-loudness parameter R of the jet. We explore different possible explanations for this NH-R relation and find that ionisation, inclination, and luminosity effects are unlikely to be responsible for the observed relation. We argue that the NH-R relation is rather a manifestation of the magnetic driving mechanism of the wind from the accretion disk. Change in the magnetic field configuration from toroidal to poloidal, powering either the wind or the jet mode of the outflow, is the most feasible explanation for the observed decline in the wind NH as the radio jet becomes stronger. Our findings provide evidence for a wind-jet bimodality in radio-loud AGN and shine new light on the link between these two modes of outflow. This has far-reaching consequences for the accretion disk structure and the wind ejection mechanism.
High-energy emission of extragalactic objects is known to take place in relativistic jets, but the nature, the location, and the emission processes of the emitting particles are still unknown. One of the models proposed to explain the formation of re lativistic ejections and their associated non-thermal emission is the two-flow model, where the jets are supposed to be composed of two different flows, a mildly relativistic baryonic jet surrounding a fast, relativistically moving electron-positron plasma. Here we present the simulation of the emission of such a structure taking into account the main sources of photons that are present in active galactic nuclei (AGNs). We reproduce the broadband spectra of radio-loud AGNs with a detailed model of emission taking into account synchrotron and inverse-Compton emission by a relativistically moving beam of electron-positron, heated by a surrounding turbulent baryonic jet. We compute the density and energy distribution of a relativistic pair plasma all along a jet, taking into account the synchrotron and inverse-Compton process on the various photon sources present in the core of the AGN, as well as the pair creation and annihilation processes. We use semi-analytical approximations to quickly compute the inverse-Compton process on a thermal photon distribution with any anisotropic angular distribution. The anisotropy of the photon field is also responsible for the bulk acceleration of the pair plasma through the Compton rocket effect, thus imposing the plasma velocity along the jet. As an example, the simulated emerging spectrum is compared to the broadband emission of 3C273. In the case of 3C273, we obtain an excellent fit of the average broadband energy distribution by assuming physical parameters compatible with known estimates.
This paper describes a method of fitting total intensity and polarization profiles in VLBI images of astrophysical jets to profiles predicted by a theoretical model. As an example, the method is used to fit profiles of the jet in the Active Galactic Nucleus Mrk501 with profiles predicted by a model in which a cylindrical jet of synchrotron plasma is threaded by a magnetic field with helical and disordered components. This fitting yields model Stokes Q profiles that agree with the observed profiles to within the 1-2 sigma uncertainties; the I model and observed profiles are overall not in such good agreement, with the model I profiles being generally more symmetrical than the observed profiles. Consistent fitting results are obtained for profiles derived from 6cm VLBI images at two distances from the core, and also for profiles obtained for different wavelengths at a single location in the VLBI jet. The most striking success of the model is its ability to reproduce the spine-sheath polarization structure observed across the jet. Using the derived viewing angle in the jet rest frame, delta approximately 83 degrees, together with a superluminal speed reported in the literature, beta apparent = 3.3, yields a solution for the viewing angle and velocity of the jet in the observers frame delta degrees and beta approximately 0.96. Although these results for Mrk501 must be considered tentative, the combined analysis of polarization profiles and apparent component speeds holds promise as a means of further elucidating the magnetic field structures and other parameters of parsec-scale AGN jets.
We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas-pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, modifying significantly the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behaviour depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.
The central engine causing the production of jets in radio sources may work intermittently, accelerating shells of plasma with different mass, energy and velocity. Faster but later shells can then catch up slower earlier ones. In the resulting collis ions shocks develop, converting some of the ordered bulk kinetic energy into magnetic field and random energy of the electrons which then radiate. We propose that this internal shock scenario, which is the scenario generally thought to explain the observed gamma-ray burst radiation, can work also for radio sources in general, and for blazar in particular. We investigate in detail this idea, simulating the birth, propagation and collision of shells, calculating the spectrum produced in each collision, and summing the locally produced spectra from those regions of the jet which are simultaneously active in the observers frame. We can thus construct snapshots of the overall spectral energy distribution as well as time dependent spectra and light curves. This allows us to characterize the predicted variability at any frequency, study correlations among the emission at different frequencies, specify the contribution of each region of the jet to the total emission, find correlations between flares at high energies and the birth of superluminal radio knots and/or radio flares. The model has been applied to qualitatively reproduce the observed properties of 3C 279. Global agreement in terms of both spectra and temporal evolution is found. In a forthcoming work, we explore the constraints which this scenario sets on the initial conditions of the plasma injected in the jet and the shock dissipation for different classes of blazars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا