ترغب بنشر مسار تعليمي؟ اضغط هنا

FUSE and HST STIS Observations of Hot and Cold Gas in the AB Aurigae System

127   0   0.0 ( 0 )
 نشر من قبل Aki Roberge
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Roberge




اسأل ChatGPT حول البحث

We present the first observations of a Herbig Ae star with a circumstellar disk by the Far Ultraviolet Spectroscopic Explorer (FUSE), as well as a simultaneous observation of the star obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS). The spectra of AB Aurigae show emission and absorption features arising from gasses that have a wide range in temperature, from hot OVI emission to cold molecular hydrogen and CO absorption. Emissions from the highly ionized species OVI and CIII present in the FUSE spectrum are redshifted, while absorption features arising from low-ionization species like OI, NI, and SiII are blueshifted and show characteristic stellar wind line-profiles. We find the total column density of molecular hydrogen toward AB Aur from the FUSE apectrum, N(H_2) = (6.8 +/- 0.5) x 10^19 cm^-2. The gas kinetic temperature of the molecular hydrogen derived from the ratio N(J=1)/N(J=0) is 65 +/- 4 K. The column density of the CO observed in the STIS spectrum is N(CO) = (7.1 +/- 0.5) x 10^13 cm^-2, giving a CO/H_2 ratio of (1.04 +/- 0.11) x 10^-6. We also use the STIS spectrum to find the column density of HI, permitting us to calculate the total column density of hydrogen atoms, the fractional abundance of H_2, and the gas-to-dust ratio.

قيم البحث

اقرأ أيضاً

252 - D. Semenov 2004
(Abriged) We present the results of millimeter observations and a suitable chemical and radiative transfer model of the AB Aur (HD 31293) circumstellar disk and surrounding envelope. The integral molecular content of this system is studied by observi ng CO, C$^{18}$O, CS, HCO$^+$, DCO$^+$, H$_2$CO, HCN, HNC, and SiO rotational lines with the IRAM 30-m antenna, while the disk is mapped in the HCO$^+$(1-0) transition with the Plateau de Bure interferometer. Using a flared disk model with a vertical temperature gradient and an isothermal spherical envelope model with a shadowed midplane and two unshielded cones together with a gas-grain chemical network, time-dependent abundances of observationally important molecules are calculated. Then a 2D non-LTE line radiative transfer code is applied to compute excitation temperatures of several rotational transitions of HCO$^+$, CO, C$^{18}$O, and CS molecules. We synthesize the HCO$^+$(1-0) interferometric map along with single-dish CO(2-1), C$^{18}$O(2-1), HCO$^+$(1-0), HCO$^+$(3-2), CS(2-1), and CS(5-4) spectra and compared them with the observations. Our disk model successfully reproduces observed interferometric HCO$^+$(1-0) data, thereby constraining the following disk properties: (1) the inclination angle $iota=17^{+6}_{-3}degr$, (2) the position angle $phi=80pm30degr$, (3) the size $R_mathrm{out}=400pm200$ AU, (4) the mass $M_mathrm{disk}=1.3cdot10^{-2} M_{sun}$ (with a factor of $sim7$ uncertainty), and (5) that the disk is in Keplerian rotation. Furthermore, indirect evidence for a local inhomogeneity of the envelope at $ga600$ AU is found...
We present observations of the intrinsic absorption in the Seyfert 1 galaxy NGC 3783 obtained with the STIS/HST and FUSE. We have coadded multiple STIS and FUSE observations to obtain a high S/N averaged spectrum spanning 905-1730 A. The averaged spe ctrum reveals absorption in O VI, N V, C IV, N III, C III and the Lyman lines up to LyE in the three blueshifted kinematic components previously detected in the STIS spectrum (at radial velocities of -1320, -724, and -548 km/s). The highest velocity component exhibits absorption in Si IV. We also detect metastable C III* in this component, indicating a high density in this absorber. We separate the individual covering factors of the continuum and emission-line sources as a function of velocity in each kinematic component using the LyA and LyB lines. Additionally, we find that the continuum covering factor varies with velocity within the individual kinematic components, decreasing smoothly in the wings of the absorption by at least 60%. The covering factor of Si IV is found to be less than half that of H I and N V in the high velocity component. Additionally, the FWHM of N III and Si IV are narrower than the higher ionization lines in this component. These results indicate there is substructure within this absorber. We derive a lower limit on the total column (N_H>=10^{19}cm^{-2}) and ionization parameter (U>=0.005) in the low ionization subcomponent of this absorber. The metastable-to-total C III column density ratio implies n_e~10^9 cm^{-3} and an upper limit on the distance of the absorber from the ionizing continuum of R<=8x10^{17} cm.
265 - Jennifer E. Scott 2005
We present simultaneous X-ray, far-ultraviolet, and near-ultraviolet spectra of the Seyfert 1 galaxy NGC 7469 obtained with the Chandra X-Ray Observatory, the Far Ultraviolet Spectroscopic Explorer, and the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Previous non-simultaneous observations of this galaxy found two distinct UV absorption components, at -560 and -1900 km/s, with the former as the likely counterpart of the X-ray absorber. We confirm these two absorption components in our new UV observations, in which we detect prominent O VI, Ly alpha, N V, and C IV absorption. In our Chandra spectrum we detect O VIII emission, but no significant O VIII or O VII absorption. We also detect a prominent Fe K alpha emission line in the Chandra spectrum, as well as absorption due to hydrogen-like and helium-like neon, magnesium, and silicon at velocities consistent with the -560 km/s UV absorber. The FUSE and STIS data reveal that the H I and C IV column densities in this UV- and X-ray- absorbing component have increased over time, as the UV continuum flux decreased. We use measured H I, N V, C IV, and O VI column densities to model the photoionization state of both absorbers self-consistently. We confirm the general physical picture of the outflow in which the low velocity component is a highly ionized, high density absorber with a total column density of 10^20 cm^-2, located near the broad emission line region, although due to measurable columns of N V and C IV, we assign it a somewhat smaller ionization parameter than found previously, U~1. The high velocity UV component is of lower density, log N=18.6, and likely resides farther from the central engine as we find its ionization parameter to be U=0.08.
We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Tele scope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuum flux level of Mrk 279 at the time of the observation. Due to low signal-to-noise ratios in the Chandra spectrum, no O VII or O VIII absorption features are observable in the Chandra data, but the UV spectra reveal strong and complex absorption from HI and high-ionization species such as O VI, N V, and C IV, as well as from low-ionization species such as C III, N III, C II, and N II in some velocity components. The far-UV spectral coverage of the FUSE data provides information on high-order Lyman series absorption, which we use to calculate the optical depths and line and continuum covering fractions in the intrinsic HI absorbing gas in a self-consistent fashion. The UV continuum flux of Mrk 279 decreases by a factor of ~7.5 over the time spanning these observations and we discuss the implications of the response of the absorption features to this change. From arguments based on the velocities, profile shapes, covering fractions and variability of the UV absorption, we conclude that some of the absorption components, particularly those showing prominent low-ionization lines, are likely associated with the host galaxy of Mrk 279, and possibly with its interaction with a close companion galaxy, while the remainder arises in a nuclear outflow.
The young star AB Aurigae is surrounded by a complex combination of gas-rich and dust dominated structures. The inner disk which has not been studied previously at sufficient resolution and imaging dynamic range seems to contain very little gas insid e a radius of least 130 astronomical units (AU) from the star. Using adaptive-optics coronagraphy and polarimetry we have imaged the dust in an annulus between 43 and 302 AU from the star, a region never seen before. An azimuthal gap in an annulus of dust at a radius of 102 AU, along with a clearing at closer radii inside this annulus, suggests the formation of at least one small body at an orbital distance of about 100 AU. This structure seems consistent with crude models of mean motion resonances, or accumulation of material at two of the Lagrange points relative to the putative object and the star. We also report a low significance detection of a point source in this outer annulus of dust. This source may be an overdensity in the disk due to dust accreting onto an unseen companion. An alternate interpretation suggests that the objects mass is between 5 and 37 times the mass of Jupiter. The results have implications for circumstellar disk dynamics and planet formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا