ترغب بنشر مسار تعليمي؟ اضغط هنا

The Solar-System-Scale Disk Around AB Aurigae

116   0   0.0 ( 0 )
 نشر من قبل Sasha Hinkley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The young star AB Aurigae is surrounded by a complex combination of gas-rich and dust dominated structures. The inner disk which has not been studied previously at sufficient resolution and imaging dynamic range seems to contain very little gas inside a radius of least 130 astronomical units (AU) from the star. Using adaptive-optics coronagraphy and polarimetry we have imaged the dust in an annulus between 43 and 302 AU from the star, a region never seen before. An azimuthal gap in an annulus of dust at a radius of 102 AU, along with a clearing at closer radii inside this annulus, suggests the formation of at least one small body at an orbital distance of about 100 AU. This structure seems consistent with crude models of mean motion resonances, or accumulation of material at two of the Lagrange points relative to the putative object and the star. We also report a low significance detection of a point source in this outer annulus of dust. This source may be an overdensity in the disk due to dust accreting onto an unseen companion. An alternate interpretation suggests that the objects mass is between 5 and 37 times the mass of Jupiter. The results have implications for circumstellar disk dynamics and planet formation.



قيم البحث

اقرأ أيضاً

Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauris and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 and CN 2-1/HCN 3-2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far. Conclusions. We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 Msun , Rin=110 AU, Rout=550 AU, a surface density radial index of 1.5 and an inclination of 27 deg. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable taking into account the simplicity of our model that neglects any structure within the disk. However, the HCN 3-2 and CN 2-1 line intensities were predicted more intense by a factor of >10. We discuss several scenarios to explain this discrepancy.
252 - D. Semenov 2004
(Abriged) We present the results of millimeter observations and a suitable chemical and radiative transfer model of the AB Aur (HD 31293) circumstellar disk and surrounding envelope. The integral molecular content of this system is studied by observi ng CO, C$^{18}$O, CS, HCO$^+$, DCO$^+$, H$_2$CO, HCN, HNC, and SiO rotational lines with the IRAM 30-m antenna, while the disk is mapped in the HCO$^+$(1-0) transition with the Plateau de Bure interferometer. Using a flared disk model with a vertical temperature gradient and an isothermal spherical envelope model with a shadowed midplane and two unshielded cones together with a gas-grain chemical network, time-dependent abundances of observationally important molecules are calculated. Then a 2D non-LTE line radiative transfer code is applied to compute excitation temperatures of several rotational transitions of HCO$^+$, CO, C$^{18}$O, and CS molecules. We synthesize the HCO$^+$(1-0) interferometric map along with single-dish CO(2-1), C$^{18}$O(2-1), HCO$^+$(1-0), HCO$^+$(3-2), CS(2-1), and CS(5-4) spectra and compared them with the observations. Our disk model successfully reproduces observed interferometric HCO$^+$(1-0) data, thereby constraining the following disk properties: (1) the inclination angle $iota=17^{+6}_{-3}degr$, (2) the position angle $phi=80pm30degr$, (3) the size $R_mathrm{out}=400pm200$ AU, (4) the mass $M_mathrm{disk}=1.3cdot10^{-2} M_{sun}$ (with a factor of $sim7$ uncertainty), and (5) that the disk is in Keplerian rotation. Furthermore, indirect evidence for a local inhomogeneity of the envelope at $ga600$ AU is found...
122 - J. Hashimoto , M. Tamura , T. Muto 2011
We report high-resolution 1.6 $micron$ polarized intensity ($PI$) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU ($0.15$) up to 554 AU (3.$$85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part ($lesssim$140 AU) of the disk, while confirming the previously reported outer ($r$ $gtrsim$200 AU) spiral structure. We have imaged a double ring structure at $sim$40 and $sim$100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is $sim$45 AU or less) within two rings as well as three prominent $PI$ peaks at $sim$40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit ($r$ $>$20 AU) planets.
Context: Methanol is thought to be mainly formed during the prestellar phase and its deuterated form keeps memory of the conditions at that epoch. Thanks to the unique combination of high angular resolution and sensitivity provided by ALMA, we wish t o measure methanol deuteration in the planet formation region around a Class 0 protostar and to understand its origin. Aims: We mapped both the $^{13}$CH$_3$OH and CH$_2$DOH distribution in the inner regions ($sim$100 au) of the HH212 system in Orion B. To this end, we used ALMA Cycle 1 and Cycle 4 observations in Band 7 with angular resolution down to $sim$0.15$$. Results: We detected 6 lines of $^{13}$CH$_3$OH and 13 lines of CH$_2$DOH with upper level energies up to 438 K in temperature units. We derived a rotational temperature of (171 $pm$ 52) K and column densities of 7$times$10$^{16}$ cm$^{-2}$ ($^{13}$CH$_3$OH) and 1$times$10$^{17}$ cm$^{-2}$ (CH$_2$DOH), respectively. Consequently, the D/H ratio is (2.4 $pm$ 0.4)$times$10$^{-2}$, a value lower by an order of magnitude with respect to what was previously measured using single dish telescopes toward protostars located in Perseus. Our findings are consistent with the higher dust temperatures in Orion B with respect to that derived for the Perseus cloud. The emission is tracing a rotating structure extending up to 45 au from the jet axis and elongated by 90 au along the jet axis. So far, the origin of the observed emission appears to be related with the accretion disk. Only higher spatial resolution measurements however, will be able to disentangle between different possible scenarios: disk wind, disk atmosphere, or accretion shocks.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the CO ($J$=2--1) line emission from the protoplanetary disk around T-Tauri star SU Aurigae (hereafter SU Aur). Previous observations in optical and near infrared waveleng ths find a unique structure in SU Aur. One of the highlights of the observational results is that an extended tail-like structure is associated with the disk, indicating mass transfer from or into the disk. Here we report the discovery of the counterpart of the tail-like structure in CO gas extending more than 1000 au long. Based on geometric and kinematic perspectives, both of the disk and the tail-like structure components physically connect to each other. Several theoretical studies predicted the observed tail-like structure via the following possible scenarios, 1) a gaseous stream from the molecular cloud remnant, 2) collision with a (sub)stellar intruder or a gaseous blob from the ambient cloud, and 3) ejection of a planetary or brown dwarf mass object due to gravitational instability via multi-body gravitational interaction. Since the tail-like structures associated with the SU Aur disk is a new example following RW Aurigae, some disks may experience the internal or external interaction and drastically lose mass during disk evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا