ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared and Millimetric Study of the Young Outflow Cepheus E

52   0   0.0 ( 0 )
 نشر من قبل Alberto Noriega-Crespo
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Moro-Martin




اسأل ChatGPT حول البحث

The Cepheus E outflow has been studied in the mid and far infrared using the ISO CAM and LWS instruments, and at millimetric wavelengths using OVRO. In the near and mid-IR, its morphology is similar to that expected for a jet driven outflow, where the leading bow shocks entrain and accelerate the surrounding molecular gas. As expected, fine structure atomic/ionic emission lines arise from the bow shocks, at both the Mach Disk and the stagnation tip, where J-shocks are dominant. The H2, H2O and CO molecular emission could arise further `downstream at the bow shock wings where the shocks (v = 8-35 km/s) are oblique and more likely to be C-type. The 13CO emission arises from entrained molecular gas and a compact high velocity emission is observed, together with an extended low velocity component that almost coincides spatially with the H2 near-IR emission. The millimetric continuum emission shows two sources. We identify one of them with IRAS 23011+6126, postulating is the driver of the Cepheus E outflow; the other, also an embedded source, is likely to be driving one of other outflows observed in the region.

قيم البحث

اقرأ أيضاً

Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jets and outflows are laun ched, and to quantify their chemical and energetic impacts on the surrounding medium. We performed a high-spectral resolution study of the [OI]$_{rm 63 mu m}$ emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. We present observations of the OI $^3$P$_1 rightarrow$ $^3$P$_2$, OH between $^2Pi_{1/2}$ $J = 3/2$ and $J = 1/2$ at 1837.8 GHz, and CO (16-15) lines with SOFIA-GREAT at three positions in the Cep E outflow: mm (the driving protostar), BI (in the southern lobe), and BII (the terminal position in the southern lobe). The CO line is detected at all three positions. The OI line is detected in BI and BII, whereas the OH line is not detected. In BII, we identify three kinematical components in OI and CO, already detected in CO: the jet, the HH377 terminal bow-shock, and the outflow cavity. The OI column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is where the abundance ratio of OI to CO is the lowest (about 0.2), whereas the jet component is atomic (ratio $sim$2.7). In the jet, we compare the OI observations with shock models that successfully fit the integrated intensity of 10 CO lines: these models do not fit the OI data. The high intensity of OI emission points towards the propagation of additional dissociative or alternative FUV-irradiated shocks, where the illumination comes from the shock itself. From the sample of low-to-high mass protostellar outflows where similar observations have been performed, the effects of illumination seem to increase with the mass of the protostar.
We present the results of multi-epoch very long baseline interferometry (VLBI) water (H2O) maser observations carried out with the VLBI Exploration of Radio Astrometry (VERA) toward the Cepheus A HW3d object. We measured for the first time relative p roper motions of the H2O maser features, whose spatio-kinematics traces a compact bipolar outflow. This outflow looks highly collimated and expanding through ~ 280 AU (400 mas) at a mean velocity of ~ 21 km/s (~ 6 mas/yr) without taking into account the turbulent central maser cluster. The opening angle of the outflow is estimated to be ~ 30{circ}. The dynamical time-scale of the outflow is estimated to be ~ 100 years. Our results provide strong support that HW3d harbors an internal massive young star, and the observed outflow could be tracing a very early phase of star formation. We also have analyzed Very Large Array (VLA) archive data of 1.3 cm continuum emission obtained in 1995 and 2006 toward Cepheus A. The comparative result of the HW3d continuum emission suggests the possibility of the existence of distinct young stellar objects (YSOs) in HW3d and/or strong variability in one of their radio continuum emission components.
80 - Luis A. Zapata 2013
We present (sub)millimeter line and continuum observations in a mosaicing mode of the massive star forming region Cepheus A East made with the Submillimeter Array (SMA). Our mosaic covers a total area of about 3$$ $times$ 12$$ centered in the HW 2/3 region. For the first time, this observational study encloses a high angular resolution ($sim$ 3$$) together with a large scale mapping of Cepheus A East. We report compact and high velocity $^{12}$CO(2-1) emission associated with the multiple east-west bright H$_2$ condensations present in the region. Blueshifted and redshifted gas emission is found towards the east as well as west of HW 2/3. The observations suggest the presence of multiple large-scale east-west outflows that seems to be powered at smaller scales by radio sources associated with the young stars HW2, HW3c and HW3d. A kinematical study of part of the data suggests that the molecular outflow powered by HW2 is precesing with time as recently reported. Our data reveal five periodic ejections of material separated approximately every 10$^circ$ as projected in the plane of the sky. The most recent ejections appear to move toward the plane of the sky. An energetic explosive event as the one that occurred in Orion BN/KL or DR21 does not explain the kinematics, and the dynamical times of the multiple ejections found here. The continuum observations only revealed a strong millimeter source associated with the HW 2/3 region. High angular resolution observations allow us to resolve this extended dusty object in only two compact sources (with spatial sizes of approximately 300 AU) associated with HW2 and HW3c. Finally, the bright optical/X-Ray HH 168 -- GDD37 object might be produced by strong shocks related with the outflow from HW3c.
45 - B. Mookerjea 2006
Aim: The aim of the paper is to understand the emission from the photon dominated regions in Cepheus B, estimate the column densities of neutral carbon in bulk of the gas in Cepheus B and to derive constraints on the factors which determine the abund ance of neutral carbon relative to CO. Methods: This paper presents 15x15 fully sampled maps of CI at 492 GHz and 12CO 4-3 observed with KOSMA at 1 resolution. The new observations have been combined with the FCRAO 12CO 1-0, IRAM-30m 13CO 2-1 and C18O 1-0 data, and far-infrared continuum data from HIRES/IRAS. The KOSMA-tau spherical PDR model has been used to understand the CI and CO emission from the PDRs in Cepheus B and to explain the observed variation of the relative abundances of both C^0 and CO. Results: The emission from the PDR associated with Cepheus B is primarily at V_LSR between -14 and -11 km s^-1. We estimate about 23% of the observed CII emission from the molecular hotspot is due to the ionized gas in the HII region. Over bulk of the material the C^0 column density does not change significantly, (2.0+-1.4)x10^17 cm^-2, although the CO column density changes by an order of magnitude. The observed cbyco abundance ratio varies between 0.06 and 4 in Cepheus B. We find an anti-correlation of the observed C/CO abundance ratio with the observed hydrogen column density, which holds even when all previous observations providing C/CO ratios are included. Here we show that this observed variation of C/CO abundance with total column density can be explained only by clumpy PDRs consisting of an ensemble of clumps. At high H2 column densities high mass clumps, which exhibit low C/CO abundance, dominate, while at low column densities, low mass clumps with high C/CO abundance dominate.
We present a near-infrared (0.9-2.4 microns) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (~10-300 Myr). Our sample is composed of 48 low-resolution (R~100) spectra and 41 moderate-resolutio n spectra (R>~750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provide consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of ~10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K, Na and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا