ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Photon Dominated Regions in Cepheus B

46   0   0.0 ( 0 )
 نشر من قبل Bhaswati Mookerjea
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Mookerjea




اسأل ChatGPT حول البحث

Aim: The aim of the paper is to understand the emission from the photon dominated regions in Cepheus B, estimate the column densities of neutral carbon in bulk of the gas in Cepheus B and to derive constraints on the factors which determine the abundance of neutral carbon relative to CO. Methods: This paper presents 15x15 fully sampled maps of CI at 492 GHz and 12CO 4-3 observed with KOSMA at 1 resolution. The new observations have been combined with the FCRAO 12CO 1-0, IRAM-30m 13CO 2-1 and C18O 1-0 data, and far-infrared continuum data from HIRES/IRAS. The KOSMA-tau spherical PDR model has been used to understand the CI and CO emission from the PDRs in Cepheus B and to explain the observed variation of the relative abundances of both C^0 and CO. Results: The emission from the PDR associated with Cepheus B is primarily at V_LSR between -14 and -11 km s^-1. We estimate about 23% of the observed CII emission from the molecular hotspot is due to the ionized gas in the HII region. Over bulk of the material the C^0 column density does not change significantly, (2.0+-1.4)x10^17 cm^-2, although the CO column density changes by an order of magnitude. The observed cbyco abundance ratio varies between 0.06 and 4 in Cepheus B. We find an anti-correlation of the observed C/CO abundance ratio with the observed hydrogen column density, which holds even when all previous observations providing C/CO ratios are included. Here we show that this observed variation of C/CO abundance with total column density can be explained only by clumpy PDRs consisting of an ensemble of clumps. At high H2 column densities high mass clumps, which exhibit low C/CO abundance, dominate, while at low column densities, low mass clumps with high C/CO abundance dominate.

قيم البحث

اقرأ أيضاً

Aims: We aim at deriving the excitation conditions of the interstellar gas as well as the local FUV intensities in the molecular cloud surrounding NGC 3603 to get a coherent picture of how the gas is energized by the central stars. Methods: The NANTE N2-4m submillimeter antenna is used to map the [CI] 1-0, 2-1 and CO 4-3, 7-6 lines in a 2 x 2 region around the young OB cluster NGC 3603 YC. These data are combined with C18O 2-1 data, HIRES-processed IRAS 60 and 100 micron maps of the FIR continuum, and Spitzer/IRAC maps. Results: The NANTEN2 observations show the presence of two molecular clumps located south-east and south-west of the cluster and confirm the overall structure already found by previous CS and C18O observations. We find a slight position offset of the peak intensity of CO and [CI], and the atomic carbon appears to be further extended compared to the molecular material. We used the HIRES far-infrared dust data to derive a map of the FUV field heating the dust. We constrain the FUV field to values of chi = 3 - 6 times 10^3 in units of the Draine field across the clouds. Approximately 0.2 to 0.3 % of the total FUV energy is re-emitted in the [CII] 158 {mu}m cooling line observed by ISO. Applying LTE and escape probability calculations, we derive temperatures (TMM1 = 43 K, TMM2 = 47 K), column densities (N(MM1) = 0.9 times 10^22 cm^-2, N(MM2) = 2.5 times 10^22 cm^-2) and densities (n(MM1) = 3 times 10^3 cm^-3, n(MM2) = 10^3 -10^4 cm^-3) for the two observed molecular clumps MM1 and MM2. Conclusions: The cluster is strongly interacting with the ambient molecular cloud, governing its structure and physical conditions. A stability analysis shows the existence of gravitationally collapsing gas clumps which should lead to star formation. Embedded IR sources have already been observed in the outskirts of the molecular cloud and seem to support our conclusions.
We present CI 3P1-3P0 spectra at four spiral arm positions and the nuclei of the nearby galaxies M83 and M51 obtained at the JCMT. This data is complemented with maps of CO 1-0, 2-1, and 3-2, and ISO/LWS far-infrared data of CII (158 micron), OI (63 micron), and NII (122 micron) allowing for the investigation of a complete set of all major gas cooling lines. From the intensity of the NII line, we estimate that between 15% and 30% of the observed CII emission originate from the dense ionized phase of the ISM. The analysis indicates that emission from the diffuse ionized medium is negligible. In combination with the FIR dust continuum, we find gas heating efficiencies below ~0.21% in the nuclei, and between 0.25 and 0.36% at the outer positions. Comparison with models of photon-dominated regions (PDRs) of Kaufman et al. (1999) with the standard ratios OI(63)/CII_PDR and (OI(63)+CII_PDR) vs. TIR, the total infrared intensity, yields two solutions. The physically most plausible solution exhibits slightly lower densities and higher FUV fields than found when using a full set of line ratios, CII_PDR/CI(1-0), CI(1-0)/CO(3-2), CO(3-2)/CO(1-0), CII/CO(3-2), and, OI(63)/CII_PDR. The best fits to the latter ratios yield densities of 10^4 cm^-3 and FUV fields of ~G_0=20-30 times the average interstellar field without much variation. At the outer positions, the observed total infrared intensities are in perfect agreement with the derived best fitting FUV intensities. The ratio of the two intensities lies at 4-5 at the nuclei, indicating the presence of other mechanisms heating the dust.
We aim to investigate the chemistry of internal photon-dominated regions surrounding deeply embedded hypercompact and ultracompact HII regions. We search for specific tracers of this evolutionary stage of massive star formation that can be detected w ith current astronomical facilities. We modeled hot cores with embedded HC/UCHII regions, by coupling the astrochemical code Saptarsy to a radiative transfer framework obtaining the spatio-temporal evolution of abundances as well as time-dependent synthetic spectra. In these models where we focused on the internal PDR surrounding the HI region, the gas temperature is set to the dust temperature and we do not include dynamics thus the density structure is fixed. We compared this to hot molecular core models and studied the effect on the chemistry of the radiation field which is included in the HII region models only during the computation of abundances. In addition, we investigated the chemical evolution of the gas surrounding HII regions with models of different densities at the ionization front, different sizes of the ionized cavity and different initial abundances. We obtain the time evolution of synthetic spectra for a dozen of selected species as well as ratios of their integrated intensities. We find that some molecules such as C, N2H+, CN, and HCO do not trace the inner core and so are not good tracers to distinguish the HII/PDR regions to the HMCs phase. On the contrary, C+ and O trace the internal PDRs, in the two models starting with different initial abundances, but are unfortunately currently unobservable with the current achievable spatial resolution because of the very thin internal PDR (r < 100 AU). In addition, we find that the abundance profiles are highly affected by the choice of the initial abundances, hence the importance to properly define them.
We present a detailed theoretical study of the rotational excitation of CH$^+$ due to reactive and nonreactive collisions involving C$^+(^2P)$, H$_2$, CH$^+$, H and free electrons. Specifically, the formation of CH$^+$ proceeds through the reaction b etween C$^+(^2P)$ and H$_2( u_{rm H_2}=1, 2)$, while the collisional (de)excitation and destruction of CH$^+$ is due to collisions with hydrogen atoms and free electrons. State-to-state and initial-state-specific rate coefficients are computed in the kinetic temperature range 10-3000~K for the inelastic, exchange, abstraction and dissociative recombination processes using accurate potential energy surfaces and the best scattering methods. Good agreement, within a factor of 2, is found between the experimental and theoretical thermal rate coefficients, except for the reaction of CH$^+$ with H atoms at kinetic temperatures below 50~K. The full set of collisional and chemical data are then implemented in a radiative transfer model. Our Non-LTE calculations confirm that the formation pumping due to vibrationally excited H$_2$ has a substantial effect on the excitation of CH$^+$ in photon-dominated regions. In addition, we are able to reproduce, within error bars, the far-infrared observations of CH$^+$ toward the Orion Bar and the planetary nebula NGC~7027. Our results further suggest that the population of $ u_{rm H_2}=2$ might be significant in the photon-dominated region of NGC~7027.
226 - B. Mookerjea 2012
By observing radiation-affected gas in the Cepheus B molecular cloud we probe whether the sequential star formation in this source is triggered by the radiation from newly formed stars. We used the dual band receiver GREAT onboard SOFIA to map [C II] and CO 13--12 and 11--10 in Cep B and compared the spatial distribution and the spectral profiles with complementary ground-based data of low-$J$ transitions of CO isotopes, atomic carbon, and the radio continuum. The interaction of the radiation from the neighboring OB association creates a large photon-dominated region (PDR) at the surface of the molecular cloud traced through the photoevaporation of C^+. Bright internal PDRs of hot gas are created around the embedded young stars, where we detect evidence of the compression of material and local velocity changes; however, on the global scale we find no indications that the dense molecular material is dynamically affected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا