ترغب بنشر مسار تعليمي؟ اضغط هنا

A catalogue of soft X-ray sources in the galactic center region

230   0   0.0 ( 0 )
 نشر من قبل Lara Sidoli
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalogue of 107 point-like X-ray sources derived from a systematic analysis of all the ROSAT PSPC observations of the galactic center region performed in 1992-1993. Besides SgrA*, the massive black hole at the galactic center, 41 X-ray sources have been positionally associated with already classified objects. Twenty are identified with foreground stars and five with known Low Mass X-ray Binaries. The majority of the sources in our catalogue still remains unidentified. They are hard and/or severely absorbed and probably represent a large population of X-ray binaries located in the galactic center region, accreting at low accretion rates, and still largely unknown.

قيم البحث

اقرأ أيضاً

67 - Masaaki Sakano 2001
The ASCA satellite made 107 pointing observations on a 5 x 5 deg^2 region around the center of our Milky Way Galaxy (the Galactic Center) from 1993 to 1999. In the X-ray images of the 0.7--3 keV or 3--10 keV bands, we found 52 point sources and a doz en diffuse sources. All the point sources are uniformly fitted with an absorbed power-law model. For selected bright sources, Sgr A*, AX J1745.6-2901, A 1742-294, SLX 1744-300, GRO J1744-28, SLX 1737-282, GRS 1734-292, AX J1749.2-2725, KS 1741-293, GRS 1741.9-2853, and an unusual flare source XTE J1739-302, we present further detailed spectral and timing analyses, and discuss their nature. The dozen extended X-ray sources comprise radio supernova remnants, giant molecular clouds, and some new discoveries. Most show emission lines from either highly ionized atoms or low-ionized irons. The X-ray spectra were fitted with either a thin thermal or power-law model. This paper summarizes the results and provides the ASCA X-ray source catalogue in the Galactic Center region.
We present the results of a Suzaku study of a bright point-like source in the 6.7 keV intensity map of the Galactic center region. We detected an intense FeXXV 6.7 keV line with an equivalent width of ~1 keV as well as emission lines of highly ionize d Ar and Ca from a spectrum obtained by the X-ray Imaging Spectrometer. The overall spectrum is described very well by a heavily absorbed (~2x10^{23}cm^{-2}) thin thermal plasma model with a temperature of 3.8+/-0.6 keV and a luminosity of ~3x10^{34} erg s^{-1} (2.0--8.0 keV) at 8 kpc. The absorption, temperature, luminosity, and the 6.7 keV line intensity were confirmed with the archived XMM-Newton data. The source has a very red (J-Ks=8.2 mag) infrared spectral energy distribution (SED), which was fitted by a blackbody emission of ~1000 K attenuated by a visual extinction of ~31 mag. The high plasma temperature and the large X-ray luminosity are consistent with a wind-wind colliding Wolf-Rayet binary. The similarity of the SED to those of the eponymous Quintuplet cluster members suggests that the source is a WC-type source.
We report the discovery of a $1^circ$ scale X-ray plume in the northern Galactic Center (GC) region observed with Suzaku. The plume is located at ($l$, $b$) $sim$ ($0mbox{$.!!^circ$}2$, $0mbox{$.!!^circ$}6$), east of the radio lobe reported by previo us studies. No significant X-ray excesses are found inside or to the west of the radio lobe. The spectrum of the plume exhibits strong emission lines from highly ionized Mg, Si, and S that is reproduced by a thin thermal plasma model with $kT sim 0.7$ keV and solar metallicity. There is no signature of non-equilibrium ionization. The unabsorbed surface brightness is $3times10^{-14}$ erg cm$^{-2}$ s$^{-1}$ arcmin$^{-2}$ in the 1.5-3.0 keV band. Strong interstellar absorption in the soft X-ray band indicates that the plume is not a foreground source but is at the GC distance, giving a physical size of $sim$100 pc, a density of 0.1 cm$^{-3}$, thermal pressure of $1times10^{-10}$ erg cm$^{-3}$, mass of 600 $M_odot$ and thermal energy of $7times10^{50}$ erg. From the apparent association with a polarized radio emission, we propose that the X-ray plume is a magnetized hot gas outflow from the GC.
93 - M. P. Muno 2003
(abridged) We present a catalog of 2357 point sources detected during 590 ks of Chandra observations of the 17-by-17 arcminute field around Sgr A*. This field encompasses a physical area of 40 by 40 pc at a distance of 8 kpc. The completeness limit o f the sample at the Galactic center is 10^{31} erg s^{-1} (2.0--8.0 keV), while the detection limit is an order of magnitude lower. The 281 sources detected below 1.5 keV are mainly in the foreground of the Galactic center, while comparisons to the Chandra deep fields at high Galactic latitudes suggest that only about 100 of the observed sources are background AGN. The surface density of absorbed sources (not detected below 1.5 keV) falls off as 1/theta away from Sgr A*, in agreement with the distribution of stars in infrared surveys. Point sources brighter than our completeness limit produce 10% of the flux previously attributed to diffuse emission. The log(N)-log(S) distribution of the Galactic center sources is extremely steep (power-law slope alpha = 1.7). If this distribution extends down to a flux of 10^{-17} erg cm^{-1} s^{-1} (10^{29} erg s^{-1} at 8 kpc, 2.0--8.0 keV) with the same slope, then point sources would account for all of the previously reported diffuse emission. Therefore, the 2.0--8.0 keV luminosity distribution must flatten between 10^{29} - 10^{31} erg s^{-1}. Finally, the spectra of more than half of the Galactic center sources are very hard, and can be described by a power law ($E^{-Gamma}) with photon index Gamma < 1. Such hard spectra have been seen previously only from magnetically accreting white dwarfs and wind-accreting neutron stars, suggesting that there are large numbers of these systems in our field.
Diffuse X-rays from the Galactic center (GC) region were found to exhibit many K-shell lines from iron and nickel atoms in the 6--9 keV band. The strong emission lines seen in the spectrum are neutral iron K$alpha$ at 6.4~keV, He-like iron K$alpha$ a t 6.7~keV, H-like iron Ly$alpha$ at 6.9~keV, and He-like iron K$beta$ at 7.8~keV. Among them, the 6.4~keV emission line is a probe of non-thermal phenomena. We have detected strong 6.4~keV emission in several giant molecular clouds, some of which were newly discovered by Suzaku. All the spectra exhibit large equivalent widths of 1-2~keV and absorption columns of $2-10times 10^{23}{rm H cm}^{-2}$. We found time variability of diffuse 6.4~keV emission in the Sgr B2 region comparing the maps and spectra obtained from 1994 to 2005 with ASCA, Chandra, XMM-Newton and Suzaku. We also report discovery of K$alpha$ lines of neutral argon, calcium, chrome, and manganese atoms in the Sgr~A region. We show that the equivalent width of the 6.4~keV emission line detected in X-ray faint region against the 6.4 keV-associated continuum (power-law component) is $sim 800 {rm eV}$. These features are naturally explained by the X-ray reflection nebula scenario rather than the low energy cosmic-ray electrons scenario. On the other hand, a 6.4~keV clump, G~0.162$-$0.217, discovered at the south end of the Radio Arc has a small equivalent width of 6.4~keV emission line of $sim200 {rm eV}$. The Radio Arc is a site of relativistic electrons. Thus, it is conceivable that the X-rays of G~0.162$-$0.217 are due to low energy cosmic-ray electrons
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا