ترغب بنشر مسار تعليمي؟ اضغط هنا

The Suzaku Hard X-ray Survey on the Galactic Center Region

192   0   0.0 ( 0 )
 نشر من قبل Takeshi Go Tsuru
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffuse X-rays from the Galactic center (GC) region were found to exhibit many K-shell lines from iron and nickel atoms in the 6--9 keV band. The strong emission lines seen in the spectrum are neutral iron K$alpha$ at 6.4~keV, He-like iron K$alpha$ at 6.7~keV, H-like iron Ly$alpha$ at 6.9~keV, and He-like iron K$beta$ at 7.8~keV. Among them, the 6.4~keV emission line is a probe of non-thermal phenomena. We have detected strong 6.4~keV emission in several giant molecular clouds, some of which were newly discovered by Suzaku. All the spectra exhibit large equivalent widths of 1-2~keV and absorption columns of $2-10times 10^{23}{rm H cm}^{-2}$. We found time variability of diffuse 6.4~keV emission in the Sgr B2 region comparing the maps and spectra obtained from 1994 to 2005 with ASCA, Chandra, XMM-Newton and Suzaku. We also report discovery of K$alpha$ lines of neutral argon, calcium, chrome, and manganese atoms in the Sgr~A region. We show that the equivalent width of the 6.4~keV emission line detected in X-ray faint region against the 6.4 keV-associated continuum (power-law component) is $sim 800 {rm eV}$. These features are naturally explained by the X-ray reflection nebula scenario rather than the low energy cosmic-ray electrons scenario. On the other hand, a 6.4~keV clump, G~0.162$-$0.217, discovered at the south end of the Radio Arc has a small equivalent width of 6.4~keV emission line of $sim200 {rm eV}$. The Radio Arc is a site of relativistic electrons. Thus, it is conceivable that the X-rays of G~0.162$-$0.217 are due to low energy cosmic-ray electrons



قيم البحث

اقرأ أيضاً

We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown cent ral component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with $Gammasim1.3$-$2.3$ up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe K$alpha$ fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density ($sim10^{23}$ cm$^{-2}$), primary X-ray spectra (power-laws with $Gammasim2$) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to $L_X stackrel{>}{sim} 10^{38}$ erg s$^{-1}$. Above ~20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses $M_{rm WD} sim 0.9 M_{odot}$. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.
161 - A. Viana 2011
The Galactic center region is the most active region in the Milky Way harboring a wealth of photon sources at all wavelengths. H.E.S.S. observations of the Galactic Center (GC) region revealed for the first time in very high energy (VHE, E> 100 GeV) gamma-rays a detailed view of the innermost 100 pc of the Milky Way and provided a valuable probe for the acceleration processes and propagation of energetic particles near the GC. H.E.S.S. has taken more than 180 hours of good-quality observations toward the GC region since the experience started in 2003. A strong and steady gamma-ray source has been detected coincident in position with the supermassive black hole Sgr A*. Besides the central pointlike source, a diffuse emission extended along the Galactic Plane has been detected within about 1$^{circ}$ around the GC. An accurate analysis of the Galactic center region suggests that the diffuse emission may dominate highest energy end of the overall GC source spectrum. I will review the current VHE view by H.E.S.S. of the GC region and briefly discuss the theoretical models which explain VHE gamma-ray emissions of the central source and the diffuse emission.
We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively . In the area of deepest coverage, sensitivity limits of $5times10^{-14}$ and $4times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of $approx$10-20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR log$N$-log$S$ distribution in the 10-20 keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with $kTapprox15$~keV, as observed for the CV candidates.
301 - K. Koyama , Y. Hyodo , T. Inui 2007
We report on the diffuse X-ray emissions from the Galactic center (GCDX) observed with the X-ray Imaging Spectrometer (XIS) on board the Suzaku satellite. The highly accurate energy calibrations and extremely low background of the XIS provide many ne w facts on the GCDX. These are (1) the origin of the 6.7/7.0keV lines is collisional excitation in hot plasma, (2) new SNR and super-bubble candidates are found, (3) most of the 6.4keV line is fluorescence by X-rays, and (4) time variability of the 6.4keV line is found from the SgrB2 complex.
We present the results of a Suzaku study of a bright point-like source in the 6.7 keV intensity map of the Galactic center region. We detected an intense FeXXV 6.7 keV line with an equivalent width of ~1 keV as well as emission lines of highly ionize d Ar and Ca from a spectrum obtained by the X-ray Imaging Spectrometer. The overall spectrum is described very well by a heavily absorbed (~2x10^{23}cm^{-2}) thin thermal plasma model with a temperature of 3.8+/-0.6 keV and a luminosity of ~3x10^{34} erg s^{-1} (2.0--8.0 keV) at 8 kpc. The absorption, temperature, luminosity, and the 6.7 keV line intensity were confirmed with the archived XMM-Newton data. The source has a very red (J-Ks=8.2 mag) infrared spectral energy distribution (SED), which was fitted by a blackbody emission of ~1000 K attenuated by a visual extinction of ~31 mag. The high plasma temperature and the large X-ray luminosity are consistent with a wind-wind colliding Wolf-Rayet binary. The similarity of the SED to those of the eponymous Quintuplet cluster members suggests that the source is a WC-type source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا