ﻻ يوجد ملخص باللغة العربية
SuperAGILE is the X-ray stage of the AGILE gamma-ray mission. It is devoted to monitor X-ray (10-40 keV) sources with a sensitivity better than 10 mCrabs in 50 ks and to detect X-ray transients in a field of view of 1.8 sr, well matched to that of the gamma-ray tracker, with few arc-minutes position resolution and better than 5 us timing resolution. SuperAGILE is designed to exploit one additional layer of four Si microstrip detectors placed on top of the AGILE tracker, and a system of four mutually orthogonal one-dimensional coded masks to encode the X-ray sky. The total geometric area is 1444 cm^2. Low noise electronics based on ASIC technology composes the front-end read out. We present here the instrumental and astrophysical performances of SuperAGILE as derived by analytical calculations, Monte Carlo simulations and experimental tests on a prototype of the silicon microstrip detector and front-end electronics.
SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of
We describe the AGILE gamma-ray astronomy satellite which has recently been selected as the first Small Scientific Mission of the Italian Space Agency. With a launch in 2002, AGILE will provide a unique tool for high-energy astrophysics in the 30 MeV
SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23$^{rd}$ April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in
GRB 070724B is the first Gamma Ray Burst localized by SuperAGILE, the hard X-ray monitor aboard the AGILE satellite. The coordinates of the event were published $sim 19$ hours after the trigger. The Swift X-Ray Telescope pointed at the SuperAGILE loc
We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel pl