ترغب بنشر مسار تعليمي؟ اضغط هنا

Big Bang nucleosynthesis and the baryonic content of the universe

46   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A review of the latest measurements of the primordial abundances of the light nuclei D, 3He, 4He and 7Li is given. We discuss in particular the primordial abundance Yp of 4He as measured in blue compact dwarf galaxies. We argue that the best measurements now give a ``high value of Yp along with a ``low value of D/H, and that the two independent measurements are consistent within the framework of standard Big Bang nucleosynthesis with a number of light neutrino species Nnu = 3.0+/-0.3 (2sigma).

قيم البحث

اقرأ أيضاً

We perform calculations of dark photon production and decay in the early universe for ranges of dark photon masses and vacuum coupling with standard model photons. Simultaneously and self-consistently with dark photon production and decay, our calcul ations include a complete treatment of weak decoupling and big bang nucleosynthesis (BBN) physics. These calculations incorporate all relevant weak, electromagnetic, and strong nuclear reactions, including charge-changing (isospin-changing) lepton capture and decay processes. They reveal a rich interplay of dark photon production, decay, and associated out-of-equilibrium transport of entropy into the decoupling neutrino seas. Most importantly, the self-consistent nature of our simulations allows us to capture the magnitude and phasing of entropy injection and dilution. Entropy injection-induced alteration of the time-temperature-scale factor relation during weak decoupling and BBN leads to changes in the light element abundance yields and the total radiation content (as parametrized by $N_{rm eff}$). These changes suggest ways to extend previous dark photon BBN constraints. However, our calculations also identify ranges of dark photon mass and couplings not yet constrained, but perhaps accessible and probable, in future Stage-4 cosmic microwave background experiments and future high precision primordial deuterium abundance measurements.
We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit co mes from underproduction of He-4. For larger domains, the limit comes from He-3 overproduction. Most of the He-3 from antiproton-helium annihilation is annihilated also. The main source of He-3 is photodisintegration of He-4 by the electromagnetic cascades initiated by the annihilation.
68 - Hideki Ishihara 2001
Big bang of the Friedmann-Robertson-Walker (FRW)-brane universe is studied. In contrast to the spacelike initial singularity of the usual FRW universe, the initial singularity of the FRW-brane universe is point-like from the viewpoint of causality in cluding gravitational waves propagating in the bulk. Existence of null singularities (seam singuralities) is also shown in the flat and open FRW-brane universe models.
We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set b aryon-to-photon ratio the new lifetime reduces the mass fraction of He4 by 0.0015 but does not significantly change the abundances of other isotopes. This enlarges the region of concordance between He4 and deuterium in the parameter space of the baryon-to-photon ratio and the IBBN distance scale. The Li7 abundance can be brought into concordance with observed He4 and deuterium abundances by using depletion factors as high as 9.3. The WMAP constraints, however, severely limit the allowed comoving (T = 100 GK) inhomogeneity distance scale to (1.3 - 2.6)x10^5 cm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا