ﻻ يوجد ملخص باللغة العربية
We provide detailed abundance analyses of 8 candidate super-metal-rich stars. Five of them are confirmed to have [Fe/H] > 0.2 dex, the generally-accepted limit for super-metal-richness. Furthermore, we derive abundances of several elements and find that the stars follow trends seen in previous studies of metal-rich stars. Ages are estimated from isochrones and velocities calculated. We find that there do exist very metal-rich stars that are older than 10 Gyr. This is contrary to what is found in several recent studies of the galactic age-metallicity relation. This is tentative evidence that there might not exist a one-to-one relation between age and metallicity for all stars. This is not surprising considering the current models of the independent evolution of the different galactic components. We also find that one star, HD 182572, could with ~ 75 % chance be a thick disk star with, for the thick disk, an extremely high metallicity at 0.34 dex. This star is, intriguingly, also somewhat enhanced in the alpha-elements.
High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron
We present abundance results from our Keck/HIRES observations of giants in the Galactic Bulge. We confirm that the metallicity distribution of giants in the low-reddening bulge field Baades Window can be well-fit by a closed-box enrichment model. We
We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V=13.46 mag G star. HATS-4b has a period of P = 2.5167 d, mass of Mp = 1.32 Mj, radius of Rp = 1.02 Rj and density of rho_p = 1.55 +- 0.16 g/cm^3 ~ 1.24 rhoj
The Lick Fe5015, Fe5270, Fe5335, Mgb and Mg2 indices are presented for 139 candidate SMR stars of different luminosity class studied in Malagnini et al. (2000). Evidence is found for a standard (i.e. [Mg/Fe]~0) Mg vs. Fe relative abundance. Both the
Based on the second Gaia data release (DR2) and APOGEE (DR16) spectroscopic surveys, wedefined two kinds of star sample: high-velocity thick disk (HVTD) with $v{phi}>90km/s$ and metal-richstellar halo (MRSH) with $v{phi}<90km/s$. Due to high resoluti