ترغب بنشر مسار تعليمي؟ اضغط هنا

The determination of mass of stellar disks of galaxies from the kinematic data

76   0   0.0 ( 0 )
 نشر من قبل Natalia V. Tiurina
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Different ways of the determination of masses of galactic disks, based on the kinematic data, are briefly discussed. The analysis of the rotation curves which reach maximum inside of a disk, and N-body modeling, reproducing the rotation curves and stellar velocity dispersion of real galaxies, enable to conclude that the mass of a disk is usually significantly less than the total mass of spherical components (bulge + dark halo) inside of optical borders of a galaxy, although the exceptions also exist.

قيم البحث

اقرأ أيضاً

We consider a thickness of stellar disks of late-type galaxies by analyzing the R and K_s band photometric profiles for two independent samples of edge-on galaxies. The main goal is to verify a hypotesis that a thickness of old stellar disks is relat ed to the relative masses of the spherical and disk components of galaxies. We confirm that the radial-to-vertical scale length ratio for galactic disks increases (the disks become thinner) with the increasing of total mass-to-light ratio of the galaxies, which characterize the contribution of dark halo to the total mass, and with the decreasing of central deprojected disk brightness (surface density). Our results are in good agreement with numerical models of collisionless disks evolved from subcritical velocity dispersion state to a marginally stable equilibrium state. This suggests that in most galaxies the vertical stellar velocity dispersion, which determine the equilibrium disk thickness, is close to the minimum value, that ensures disk stability. The thinnest edge-on disks appear to be low brightness galaxies (after deprojection) in which a dark halo mass far exceeds a mass of the stellar disk.
Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. We developed a model-independent method for determining the WIMP mass by using data (i.e., measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP-nucleus cross section. It requires however positive signals from at least two detectors with different target nuclei. At the first phase of this work we found a systematic deviation of the reconstructed WIMP mass from the real one for heavy WIMPs. Now we improved this method so that this deviation can be strongly reduced for even very high WIMP mass. The statistical error of the reconstructed mass has also been reduced. In a background-free evironment, a WIMP mass of ~ 50 GeV could in principle be determined with an error of ~ 35% with only 2 times 50 events.
We have obtained imaging data in two photometric bands, g and r, for a sample of 42 isolated lenticular galaxies with the Las Cumbres Observatory one-meter telescope network. We have analyzed the structure of their large-scale stellar disks. The para meters of surface brightness distributions have been determined including the radial profile shapes and disk thicknesses. After inspecting the radial brightness profiles, all the galaxies have been classified into pure exponential (Type I), truncated (Type II), and antitruncated (Type III) disks. By comparing the derived statistics of the radial profiles shapes with our previous sample of the cluster S0s, we noted a prominent difference between stellar disks of S0s galaxies in quite rarefied environments and in clusters: it is only in sparse environments that Type II disks, with profile truncations, can be found. This finding implies probable different dynamical history of S0 galaxies in different environments.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Ga laxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
We study the stellar-to-halo mass relation of central galaxies in the range 9.7<log_10(M_*/h^-2 M_sun)<11.7 and z<0.4, obtained from a combined analysis of the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We use ~100 deg^ 2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass function. At M_sun>5x10^10 h^-2 M_sun, the stellar mass increases with halo mass as ~M_h^0.25. The ratio of dark matter to stellar mass has a minimum at a halo mass of 8x10^11 h^-1 M_sun with a value of M_h/M_*=56_-10^+16 [h]. We also use the GAMA group catalogue to select centrals and satellites in groups with five or more members, which trace regions in space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments. We find no significant differences compared to the relation from the full sample, which suggests that the stellar-to-halo mass relation does not vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptions to model the satellite contribution in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show that the combination of weak lensing with the stellar mass function can be used to test the purity of group catalogues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا