ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar-to-halo mass relation of GAMA galaxies from 100 square degrees of KiDS weak lensing data

74   0   0.0 ( 0 )
 نشر من قبل Edo van Uitert
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the stellar-to-halo mass relation of central galaxies in the range 9.7<log_10(M_*/h^-2 M_sun)<11.7 and z<0.4, obtained from a combined analysis of the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We use ~100 deg^2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass function. At M_sun>5x10^10 h^-2 M_sun, the stellar mass increases with halo mass as ~M_h^0.25. The ratio of dark matter to stellar mass has a minimum at a halo mass of 8x10^11 h^-1 M_sun with a value of M_h/M_*=56_-10^+16 [h]. We also use the GAMA group catalogue to select centrals and satellites in groups with five or more members, which trace regions in space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments. We find no significant differences compared to the relation from the full sample, which suggests that the stellar-to-halo mass relation does not vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptions to model the satellite contribution in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show that the combination of weak lensing with the stellar mass function can be used to test the purity of group catalogues.

قيم البحث

اقرأ أيضاً

We use the first 100 sq. deg. of overlap between the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey to determine the galaxy halo mass of ~10,000 spectroscopically-confirmed satellite galaxies in massive ($M > 10^{13}h^{-1}{r m M}_odot$) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White (NFW) density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses $log M_{rm sub} /(h^{-1}{rm M}_odot) approx 11.7 - 12.2$ consistent across group-centric distance within the errorbars. Given their typical stellar masses, $log M_{rm star,sat}/(h^{-2}{rm M}_odot) sim 10.5$, such total masses imply stellar mass fractions of $M_{rm star,sat} /M_{rm sub} approx 0.04 h^{-1}$ . The average subhalo hosting these satellite galaxies has a mass $M_{rm sub} sim 0.015M_{rm host}$ independent of host halo mass, in broad agreement with the expectations of structure formation in a $Lambda$CDM universe.
We simultaneously present constraints on the stellar-to-halo mass relation for central and satellite galaxies through a weak lensing analysis of spectroscopically classified galaxies. Using overlapping data from the fourth data release of the Kilo-De gree Survey (KiDS), and the Galaxy And Mass Assembly survey (GAMA), we find that satellite galaxies are hosted by halo masses that are $0.53 pm 0.39$ dex (68% confidence, $3sigma$ detection) smaller than those of central galaxies of the same stellar mass (for a stellar mass of $log(M_{star}/M_{odot}) = 10.6$). This is consistent with galaxy formation models, whereby infalling satellite galaxies are preferentially stripped of their dark matter. We find consistent results with similar uncertainties when comparing constraints from a standard azimuthally averaged galaxy-galaxy lensing analysis and a two-dimensional likelihood analysis of the full shear field. As the latter approach is somewhat biased due to the lens incompleteness and as it does not provide any improvement to the precision when applied to actual data, we conclude that stacked tangential shear measurements are best-suited for studies of the galaxy-halo connection.
We present predictions for the galaxy-galaxy lensing profile from the EAGLE hydrodynamical cosmological simulation at redshift z=0.18, in the spatial range 0.02 < R/(Mpc/h) < 2, and for five logarithmically equi-spaced stellar mass bins in the range 10.3 < $log_{10}$(Mstar/ $M_{odot}$) < 11.8. We compare these excess surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the GAMA survey. Exploiting the GAMA galaxy group catalogue, the profiles of central and satellite galaxies are computed separately for groups with at least five members to minimise contamination. EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R$approx$0.5-2 Mpc/h for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the galaxy-galaxy lensing profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection.
We constrain the average halo ellipticity of ~2 600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimutha l dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modeling the signal with an elliptical Navarro-Frenk-White (NFW) profile on scales < 250 kpc, which roughly corresponds to half the virial radius, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of e_h=0.38 +/- 0.12. This agrees well with results from cold-dark-matter-only simulations, which typically report values of e_h ~ 0.3. On larger scales, the lensing signal around the BCGs does not trace the dark matter distribution well, and the distribution of group satellites provides a better proxy for the halos orientation instead, leading to a 3--4 sigma detection of a non-zero halo ellipticity at scales between 250 kpc and 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.
We use KiDS weak lensing data to measure variations in mean halo mass as a function of several key galaxy properties (namely: stellar colour, specific star formation rate, Sersic index, and effective radius) for a volume-limited sample of GAMA galaxi es in a narrow stellar mass range ($M_* sim 2$--$5 times 10^{10}$ Msol). This mass range is particularly interesting, inasmuch as it is where bimodalities in galaxy properties are most pronounced, and near to the break in both the galaxy stellar mass function and the stellar-to-halo mass relation (SHMR). In this narrow mass range, we find that both size and Sersic index are better predictors of halo mass than either colour or SSFR, with the data showing a slight preference for Sersic index. In other words, we find that mean halo mass is more tightly correlated with galaxy structure than either past star formation history or current star formation rate. Our results lead to an approximate lower bound on the dispersion in halo masses among $log M_* approx {10.5}$ galaxies: we find that the dispersion is $gtrsim 0.3$ dex. This would imply either that offsets from the mean SHMR are closely coupled to size/structure, or that the dispersion in the SHMR is larger than past results have suggested. Our results thus provide new empirical constraints on the relationship between stellar and halo mass assembly at this particularly interesting mass range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا