ترغب بنشر مسار تعليمي؟ اضغط هنا

Incidence and survival of remnant disks around main-sequence stars

53   0   0.0 ( 0 )
 نشر من قبل Carsten Dominik
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric ISO 60 and 170um measurements, complemented by some IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral class A, F, G and K in order to determine the incidence of dust disks around such main-sequence stars. Of the stars younger than 400 Myr one in two has a disk; for the older stars this is true for only one in ten. We conclude that most stars arrive on the main sequence surrounded by a disk; this disk then decays in about 400 Myr. Because (i) the dust particles disappear and must be replenished on a much shorter time scale and (ii) the collision of planetesimals is a good source of new dust, we suggest that the rapid decay of the disks is caused by the destruction and escape of planetesimals. We suggest that the dissipation of the disk is related to the heavy bombardment phase in our Solar System. Whether all stars arrive on the main sequence surrounded by a disk cannot be established: some very young stars do not have a disk. And not all stars destroy their disk in a similar way: some stars as old as the Sun still have significant disks.

قيم البحث

اقرأ أيضاً

59 - W. F. Thi 2001
We present ISO-SWS observations of H2 pure-rotational line emission from the disks around low and intermediate mass pre-main-sequence stars as well as from young stars thought to be surrounded by debris disks. We detect `warm (T ~ 100-200 K) H2 gas a round many sources, including tentatively the debris-disk objects. The mass of this warm gas ranges from ~1E-4 Solar mass up to 8E-3 Solar mass, and can constitute a non-negligible fraction of the total disk mass. Complementary single-dish 12CO 3-2, 13CO 3-2 and 12CO 6-5 observations have been obtained as well. These transitions probe cooler gas at T ~ 20-80 K. Most objects show a double-peaked CO emission profile characteristic of a disk in Keplerian rotation, consistent with interferometer data on the lower-J lines. The ratios of the 12CO 3-2/ 13CO 3-2 integrated fluxes indicate that 12CO 3-2 is optically thick but that 13CO 3-2 is optically thin or at most moderately thick. The 13CO 3-2 lines have been used to estimate the cold gas mass. If a H2/CO conversion factor of 1E4 is adopted, the derived cold gas masses are factors of 10-200 lower than those deduced from 1.3 millimeter dust emission assuming a gas/dust ratio of 100,in accordance with previous studies. The warm gas is typically 1-10 % of the total mass deduced from millimeter continuum emission, but can increase up to 100% or more for the debris-disk objects. Thus, residual molecular gas may persist into the debris-disk phase. No significant evolution in the H2, CO or dust masses is found for stars with ages in the range of 1E6-1E7 years, although a decrease is found for the older debris-disk star beta Pictoris. Existing models fail to explain the amount of warm gas quantitatively.
Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ ar e based on 1-D, cloud-free, climate model calculations by Kasting et al.(1993). The inner edge of the HZ in Kasting et al.(1993) model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our Solar system is 0.95-1.67 AU. Here, an updated 1-D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water loss (inner HZ) and maximum greenhouse (outer HZ) limits for our Solar System are at 0.99 AU and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 K and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water loss limits for stars with T_{eff} ~< 5000 K which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.
A warm/hot dust component (at temperature $>$ 300K) has been detected around $sim$ 20% of stars. This component is called exozodiacal dust as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical prope rties and spatial distribution can be significantly different. Understanding the origin and evolution of this dust is of crucial importance, not only because its presence could hamper future detections of Earth-like planets in their habitable zones, but also because it can provide invaluable information about the inner regions of planetary systems. In this review, we present a detailed overview of the observational techniques used in the detection and characterisation of exozodiacal dust clouds (exozodis) and the results they have yielded so far, in particular regarding the incidence rate of exozodis as a function of crucial parameters such as stellar type and age, or the presence of an outer cold debris disc. We also present the important constraints that have been obtained, on dust size distribution and spatial location, by using state-of-the-art radiation transfer models on some of these systems. Finally, we investigate the crucial issue of how to explain the presence of exozodiacal dust around so many stars (regardless of their ages) despite the fact that such dust so close to its host star should disappear rapidly due to the coupled effect of collisions and stellar radiation pressure. Several potential mechanisms have been proposed to solve this paradox and are reviewed in detail in this paper. The review finishes by presenting the future of this growing field.
172 - M. Jura , C. H. Chen , E. Furlan 2004
We report spectra obtained with the Spitzer Space Telescope in the wavelength range between 14 microns and 35 microns of 19 nearby main-sequence stars with infrared excesses. The six stars with strong dust emission show no recognizable spectral featu res, suggesting that the bulk of the emitting particles have diameters larger than 10 microns. If the observed dust results from collisional grinding of larger solids, we infer minimum masses of the parent body population between 0.004 of the Earths mass and 0.06 of the Earths mass. We estimate grain production rates of 10 Gg/s around lambda Boo and HR 1570; selective accretion of this matter may help explain their peculiar surface abundances. There appear to be inner truncations in the dust clouds at 48 AU, 11 AU, 52 AU and 54 AU around HR 333, HR 506, HR 1082 and HR 3927, respectively.
We present new sub-arcsecond (0.7) Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the 1.3 mm continuum emission from circumstellar disks around 11 low and intermediate mass pre-main sequence stars. High resolution ob servations for 3 additional sources were obtained from literature. In all cases the disk emission is spatially resolved. We adopt a self consistent accretion disk model based on the similarity solution for the disk surface density and constrain the dust radial density distribution on spatial scales of about 40 AU. Disk surface densities appear to be correlated with the stellar ages where the characteristic disk radius increases from ~ 20 AU to 100 AU over about 5 Myr. This disk expansion is accompanied by a decrease in the mass accretion rate, suggesting that our sample disks form an evolutionary sequence. Interpreting our results in terms of the temporal evolution of a viscous $alpha$-disk, we estimate (i) that at the beginning of the disk evolution about 60% of the circumstellar material was located inside radii of 25--40 AU, (ii) that disks formed with masses from 0.05 to 0.4 M$_{sun}$ and (iii) that the viscous timescale at the disk initial radius is about 0.1-0.3 Myr. Viscous disk models tightly link the surface density $Sigma(R)$ with the radial profile of the disk viscosity $ u(R) propto R^{gamma}$. We find values of $gamma$ ranging from -0.8 to 0.8, suggesting that the viscosity dependence on the orbital radius can be very different in the observed disks. Adopting the $alpha$ parameterization for the viscosity, we argue that $alpha$ must decrease with the orbital radius and that it may vary between 0.5 and $10^{-4}$. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا