ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton

57   0   0.0 ( 0 )
 نشر من قبل Takayuki Tamura
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of $sim 200$ kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of $sim 4$ keV. The volume emission measure of any cool component ($<1$ keV) is less than a few % of the hot component at the cluster center. A strong OVIII Lyman-alpha line was detected with the RGS from the cluster core. The O abundance and its ratio to Fe at the cluster center is 0.2--0.5 and 0.5--1.5 times the solar value, respectively.



قيم البحث

اقرأ أيضاً

We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H$alpha$, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation at the centre of this cluster
We present results from the XMM-Newton observation of the non-cooling flow cluster A1060. Large effective area of XMM-Newton enables us to investigate the nature of this cluster in unprecedented detail. From the observed surface brightness distributi on, we have found that the gravitational mass distribution is well described by the NFW profile but with a central density slope of ~1.5. We have undoubtedly detected a radial temperature decrease of as large as ~30% from the center to the outer region (r ~13), which seems much larger than that expected from the temperature profile averaged over nearby clusters. We have established that the temperature of the region ~7 southeast of the center is higher than the azimuthally averaged temperature of the same radius by ~20%. Since the pressure of this region already reaches equilibrium with the environment, the temperature structure can be interpreted as having been produced between 4*10^7 yr (the sound-crossing time) and 3*10^8 yr (the thermal conduction time) ago. We have found that the high-metallicity blob located at ~1.5 northeast of NGC 3311 is more extended and its iron mass of 1.9*10^7 M_solar is larger by an order of magnitude than estimated from our Chandra observation. The amount of iron can still be considered as being injected solely from the elliptical galaxy NGC3311.
552 - Elise Egron 2011
We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, whe re d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection model. Under the hypothesis that the iron line is produced by reflection from the inner accretion disk, we can infer important information on the physical parameters of the system, such as the inner disk radius, Rin = 25-100 km, and the inclination of the system, 44{deg} < i < 60{deg}.
393 - B. Stelzer 2002
We report on a detailed study of the X-ray spectrum of the nearby eclipsing spectroscopic binary YY Gem. Observations were obtained simultaneously with both large X-ray observatories, XMM-Newton and Chandra. We compare the high-resolution spectra acq uired with the Reflection Grating Spectrometer onboard XMM-Newton and with the Low Energy Transmission Grating Spectrometer onboard Chandra, and evidence in direct comparison the good performance of both instruments in terms of wavelength and flux calibration. The strongest lines in the X-ray spectrum of YY Gem are from oxygen. Oxygen line ratios indicate the presence of a low-temperature component (1-4 MK) with density n_e < 2 10^{10} cm^-3. The X-ray lightcurve reveals two flares and a dip corresponding to the secondary eclipse. An increase of the density during phases of high activity is suggested from time-resolved spectroscopy. Time-resolved global fitting of the European Photon Imaging Camera CCD spectrum traces the evolution of temperature and emission measure during the flares. These medium-resolution spectra show that temperatures > 10^7 K are relevant in the corona of YY Gem although not as dominant as the lower temperatures represented by the strongest lines in the high-resolution spectrum. Magnetic loops with length on the order of 10^9 cm, i.e., about 5 % of the radius of each star, are inferred from a comparison with a one-dimensional hydrodynamic model. This suggests that the flares did not erupt in the (presumably more extended) inter-binary magnetosphere but are related to one of the components of the binary.
We report on the XMM-Newton (XMM) observation of RXJ1053.7+5735, one of the most distant (z = 1.26) X-ray selected clusters of galaxies, which also shows an unusual double-lobed X-ray morphology, indicative of possible cluster-cluster interaction. Th e cluster was discovered during our ROSAT deep pointings in the direction of the Lockman Hole. The XMM observations were performed with the European Photon Imaging Camera (EPIC) during the performance verification phase. Total effective exposure time was ~ 100 ksec. The best fit temperature based on a simultaneous fit of spectra from the all EPIC cameras is 4.9(+1.5/-0.9) keV. Metallicity is poorly constrained even using the joint fit of all spectra, with an upper limit on the iron abundance of 0.62 solar. Using the best fit model parameters, we derived a bolometric luminosity of L(bol) = 3.4x10^44 h_{50}^-2 erg /s. Despite the fact that it was observed at fairly large off-axis angle, the temperature errors are much smaller compared with those of typical measurements based on ASCA or Beppo-Sax observations of z > 0.6 clusters, demonstrating the power of the XMM for determining the X-ray temperature for high-z clusters. The measured temperature and luminosity show that one can easily reach the intrinsically X-ray faint and cool cluster regime comparable with those of z ~ 0.4 clusters observed by past satellites. The new cluster temperature and L(bol) we have measured for RXJ1053.7+5735 is consistent with a weak/no evolution of the L(bol) - Tx relation out to z ~ 1.3, which lends support to a low Omega universe, although more data-points of z > 1 clusters are required for a more definitive statement. The caution has to be also exercised in interpreting the result, because of the uncertainty associated with the dynamical status of this cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا