ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton Observation of a Distant X-ray Selected Cluster of Galaxies at z=1.26 with Possible Cluster Interaction

289   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Hashimoto
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the XMM-Newton (XMM) observation of RXJ1053.7+5735, one of the most distant (z = 1.26) X-ray selected clusters of galaxies, which also shows an unusual double-lobed X-ray morphology, indicative of possible cluster-cluster interaction. The cluster was discovered during our ROSAT deep pointings in the direction of the Lockman Hole. The XMM observations were performed with the European Photon Imaging Camera (EPIC) during the performance verification phase. Total effective exposure time was ~ 100 ksec. The best fit temperature based on a simultaneous fit of spectra from the all EPIC cameras is 4.9(+1.5/-0.9) keV. Metallicity is poorly constrained even using the joint fit of all spectra, with an upper limit on the iron abundance of 0.62 solar. Using the best fit model parameters, we derived a bolometric luminosity of L(bol) = 3.4x10^44 h_{50}^-2 erg /s. Despite the fact that it was observed at fairly large off-axis angle, the temperature errors are much smaller compared with those of typical measurements based on ASCA or Beppo-Sax observations of z > 0.6 clusters, demonstrating the power of the XMM for determining the X-ray temperature for high-z clusters. The measured temperature and luminosity show that one can easily reach the intrinsically X-ray faint and cool cluster regime comparable with those of z ~ 0.4 clusters observed by past satellites. The new cluster temperature and L(bol) we have measured for RXJ1053.7+5735 is consistent with a weak/no evolution of the L(bol) - Tx relation out to z ~ 1.3, which lends support to a low Omega universe, although more data-points of z > 1 clusters are required for a more definitive statement. The caution has to be also exercised in interpreting the result, because of the uncertainty associated with the dynamical status of this cluster.

قيم البحث

اقرأ أيضاً

54 - D.M. Neumann 2003
We present here a study of XMM-Newton data of two distant galaxy cluster candidates. One of these was discovered serendipitously in near infrared data, CL J0533-2411, the other one corresponds to the cluster EIS J0533-2412 part of the EIS cluster sur vey. The estimated redshift of CL J0533-2411 is z=1.2-1.7. EIS J0533-2412 is a rich system (Lambda_cl=299), with a spectroscopically confirmed redshift of z=1.3. Both galaxy concentrations show firm X-ray detections, located within 30 of their optical center. However, we cannot resolve the sources with XMM-Newton. If the X-ray emission originates from the X-ray emitting intra-cluster medium (ICM) it would be extremely concentrated which is rather unlikely (core radii below 14 h_{65}^{-1}kpc and 40 h_{65}^{-1}kpc, respectively). We argue that the X-ray sources are more likely AGN members of the galaxy concentrations. We set an upper limit for the bolometric luminosity of a hot ICM in the range ~0.7-2.1 10^{44} h_{65}^{-2}erg/s for CL J0533-2411, depending on the exact redshift. For EIS J0533-2412 the limit is L_bol=(6.2+/-1.4) 10^{43} h_{65}^{-2}erg/s. We interpret our result in the following way: EIS J0533-2412 (and possibly CL J0533-2411) are proto-clusters and show matter overdensities before collapse, which explains the low significance of extended X-ray emission.
87 - M. Arnaud 2002
We report on a 20 ksec XMM observation of the distant cluster RXJ1120.1+4318, discovered at z=0.6 in the SHARC survey. The cluster has a regular spherical morphology, suggesting it is in a relaxed state. The combined fit of the EPIC/MOS&pn camera giv es a cluster mean temperature of kT=5.3pm0.5 keV with an iron abundance of 0.47pm0.19. The temperature profile, measured for the first time at such a redshift, is consistent with an isothermal atmosphere up to half the virial radius. The surface brightness profile, measured nearly up to the virial radius, is well fitted by a beta-model, with beta =0.78[+0.06,-0.04] and a core radius of thetac = 0.44[+0.06,-0.04] arcmin. We compared the properties of RXJ1120.1+4318 with the properties of nearby clusters for two cosmological models: an Einstein - de Sitter Universe and a flat low density Universe with Omega0=0.3. For both models, the scaled emission measure profile beyond the core, the gas mass fraction and luminosity are consistent with the expectations of the self-similar model of cluster formation, although a slightly better agreement is obtained for a low density Universe. There is no evidence of a central cooling flow, in spite of the apparent relaxed state of the cluster. This is consistent with its estimated cooling time, larger than the age of the Universe at the cluster redshift. The entropy profile shows a flat core with a central entropy of ~ 140 keV cm^2, remarkably similar to the entropy floor observed in nearby clusters, and a rising profile beyond typically 0.1 virial radius. Implications of our results, in terms of non-gravitational physics in cluster formation, are discussed.
We present the largest sample of spectroscopically confirmed X-ray luminous high-redshift galaxy clusters to date comprising 22 systems in the range 0.9<z<sim1.6 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially sel ected as extended X-ray sources over 76.1 deg^2 of non-contiguous deep archival XMM-Newton coverage. We test and calibrate the most promising two-band redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least zsim1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z>sim0.9. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z=0.916 and XDCP J0027.2+1714 at z=0.959, and investigate the Xray properties of SpARCS J003550-431224 at z=1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide X-ray properties and luminosity-based total mass estimates for the full sample, which has a median system mass of M200simeq2times10^14Modot. In contrast to local clusters, the z>0.9 systems do mostly not harbor central dominant galaxies coincident with the X-ray centroid position, but rather exhibit significant BCG offsets from the X-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of sim0.3mag. We estimate a fraction of cluster-associated NVSS 1.4GHz radio sources of about 30%, preferentially located within 1 from the X-ray center. The galaxy populations in z>sim1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs for a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions.
385 - Fabio Gastaldello 2007
We report the discovery of a galaxy cluster serendipitously detected as an extended X-ray source in an offset observation of the group NGC 5044. The cluster redshift, z=0.281, determined from the optical spectrum of the brightest cluster galaxy, agre es with that inferred from the X-ray spectrum using the Fe K alpha complex of the hot ICM (z=0.27 +/- 0.01). Based on the 50 ks XMM observation, we find that within a radius of 383 kpc the cluster has an unabsorbed X-ray flux, f_X (0.5-2 keV) = 3.34 (+0.08, -0.13) x 10^{-13} erg/cm^2/s, a bolometric X-ray luminosity, L_X = 2.21 (+0.34, -0.19) x 10^{44} erg/s, kT = 3.57 +/- 0.12 keV, and metallicity, 0.60 +/- 0.09 solar. The cluster obeys the scaling relations for L_X and T observed at intermediate redshift. The mass derived from an isothermal NFW model fit is, M_vir = 3.89 +/- 0.35 x 10^{14} solar masses, with a concentration parameter, c = 6.7 +/- 0.4, consistent with the range of values expected in the concordance cosmological model for relaxed clusters. The optical properties suggest this could be a ``fossil cluster.
67 - S. Majerowicz 2004
(abridged) We present a study based on XMM data of RX J0256.5+0006, a medium distant (z=0.36) galaxy cluster found in the Bright SHARC catalog. The intracluster medium shows a bimodal structure: one main cluster component and a substructure in the we st. Despite the indication of interaction we do not find any sign of temperature gradients. Due to the non-symmetric form of the main cluster we extract surface brightness profiles in different sectors around its centre. We see large variations between the profiles, which we quantify by beta-model fitting. The corresponding r_cs vary between 0.1-0.5Mpc and the betas between 0.5-1.2. The variations of the beta-model parameters indicate that the main cluster is not entirely relaxed. This hypothesis is strengthened by the fact that the cluster is over-luminous with respect to the (z-evolving) L_x-T relation found for nearby clusters. Comparing our profiles to the reference emission measure profile of Arnaud et al., we find that only the profile extracted north-east (NE) of the main cluster centre is similar to this reference profile. This indicates that only the NE profile is representative for the relaxed part of this cluster component. Using this profile and the spectroscopically fitted temperature of T=4.9^+0.5_-0.4keV we find M_500~4 10^14 solar masses. This value is in agreement with the value obtained using the z-evolving M_500-T relation from the HIFLUGCS sample. For the gas mass fraction we find f_g~18-20% which is in good agreement with other work. We also develop a simple on-axis merger model for the cluster. Together with a simple ram pressure model we find that the most likely physical distance of the subcluster to the main cluster lies between 0.6<d<1.0Mpc. We find for the ratio of subcluster to main cluster mass values between 20-30%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا