ترغب بنشر مسار تعليمي؟ اضغط هنا

A nearly symmetric double-image gravitational lens

97   0   0.0 ( 0 )
 نشر من قبل Joshua N. Winn
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joshua N. Winn




اسأل ChatGPT حول البحث

We report the discovery of a new double-image gravitational lens resulting from our search for lenses in the southern sky. Radio source PMN J2004-1349 is composed of two compact components separated by 1.13 arcseconds in VLA, MERLIN and VLBA images. The components have a flux ratio of 1:1 at radio frequencies ranging from 5 GHz to 22 GHz. The I-band optical counterpart is also an equal double, with roughly the same separation and position angle as the radio double. Upon subtraction of the components from the I-band image, we identify a dim pattern of residuals as the lens galaxy. While the present observations are sufficient to establish that J2004-1349 is a gravitational lens, additional information will be necessary (such as the redshifts of the galaxy and quasar, and precise astrometry and photometry of the lens galaxy) before constructing detailed mass models.

قيم البحث

اقرأ أيضاً

We report on the initial results obtained with an image convolution/deconvolution computer code that we developed and used to study the image formation capabilities of the solar gravitational lens (SGL). Although the SGL of a spherical Sun creates a greatly blurred image, knowledge of the SGLs point-spread function (PSF) makes it possible to reconstruct the original image and remove the blur by way of deconvolution. We discuss the deconvolution process, which can be implemented either with direct matrix inversion or with the Fourier quotient method. We observe that the process introduces a ``penalty in the form of a reduction in the signal-to-noise ratio (SNR) of a recovered image, compared to the SNR at which the blurred image data is collected. We estimate the magnitude of this penalty using an analytical approach and confirm the results with a series of numerical simulations. We find that the penalty is substantially reduced when the spacing between image samples is large compared to the telescope aperture. The penalty can be further reduced with suitable noise filtering, which can yield ${cal O}(10)$ or better improvement for low-quality imaging data. Our results confirm that it is possible to use the SGL for imaging purposes. We offer insights on the data collection and image processing strategies that could yield a detailed image of an exoplanet within image data collection times that are consistent with the duration of a realistic space mission.
We present the discovery of CLASS B0739+366, a new gravitational lens system from the Cosmic Lens All-Sky Survey. Radio imaging of the source with the Very Large Array (VLA) shows two compact components separated by $0farcs54$, with a flux density ra tio of $sim$ 6:1. High-resolution follow-up observations using the Very Long Baseline Array (VLBA) at 1.7 GHz detect weak, parity-reversed jet emission from each of the radio components. Hubble Space Telescope NICMOS F160W observations detect infrared counterparts to the lensed images, as well as an extended object between them which we identify as the lensing galaxy. Redshifts for the galaxy and lensed source have not yet been obtained. For typical lens and source redshifts of $z=0.5$ and $z=1.5$, respectively, preliminary mass modeling predicts a time delay of $sim7h^{-1}$ days in a flat $Omega_{M}=1.0$ universe. The small predicted time delay and weak radio components will make CLASS B0739+366 a challenging target for Hubble constant determination.
356 - M.K. Argo 2002
A new two-image gravitational lens system has been discovered as a result of the Cosmic Lens All-Sky Survey (CLASS). Radio observations with the VLA, MERLIN and the VLBA at increasingly higher resolutions all show two components with a flux density r atio of ~7:1 and a separation of 1.34. Both components are compact and have the same spectral index. Followup observations made with the VLA at 8.4 GHz show evidence of a feature to the south-east of the brighter component and a corresponding extension of the weaker component to the north-west. Optical observations with the WHT show ~1.7 extended emission aligned in approximately the same direction as the separation between the radio components with an R-band magnitude of 21.8 +/- 0.4.
We study image formation with the solar gravitational lens (SGL). We consider a point source that is positioned at a large but finite distance from the Sun. We assume that an optical telescope is positioned in the image plane, in the focal region of the SGL. We model the telescope as a convex lens and evaluate the intensity distribution produced by the electromagnetic field that forms the image in the focal plane of the convex lens. We first investigate the case when the telescope is located on the optical axis of the SGL or in its immediate vicinity. This is the region of strong interference where the SGL forms an image of a distant source, which is our primary interest. We derive analytic expressions that describe the progression of the image from an Einstein ring corresponding to an on-axis telescope position, to the case of two bright spots when the telescope is positioned some distance away from the optical axis. At greater distances from the optical axis, in the region of weak interference and that of geometric optics, we recover expressions that are familiar from models of gravitational microlensing, but developed here using a wave-optical treatment. We discuss applications of the results for imaging and spectroscopy of exoplanets with the SGL.
We study the image formation process with the solar gravitational lens (SGL) in the case of an extended, resolved source. An imaging telescope, modeled as a convex lens, is positioned within the image cylinder formed by the light received from the so urce. In the strong interference region of the SGL, this light is greatly amplified, forming the Einstein ring around the Sun, representing a distorted image of the extended source. We study the intensity distribution within the Einstein ring observed in the focal plane of the convex lens. For any particular telescope position in the image plane, we model light received from the resolved source as a combination of two signals: light received from the directly imaged region of the source and light from the rest of the source. We also consider the case when the telescope points away from the extended source or, equivalently, it observes light from sources in sky positions that are some distance away from the extended source, but still in its proximity. At even larger distances from the optical axis, in the weak interference or geometric optics regions, our approach recovers known models related to microlensing, but now obtained via the wave-optical treatment. We then derive the power of the signal and related photon fluxes within the annulus that contains the Einstein ring of the extended source, as seen by the imaging telescope. We discuss the properties of the deconvolution process, especially its effects on noise in the recovered image. We compare anticipated signals from realistic exoplanetary targets against estimates of noise from the solar corona and estimate integration times needed for the recovery of high-quality images of faint sources. The results demonstrate that the SGL offers a unique, realistic capability to obtain resolved images of exoplanets in our galactic neighborhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا