ﻻ يوجد ملخص باللغة العربية
We report on the initial results obtained with an image convolution/deconvolution computer code that we developed and used to study the image formation capabilities of the solar gravitational lens (SGL). Although the SGL of a spherical Sun creates a greatly blurred image, knowledge of the SGLs point-spread function (PSF) makes it possible to reconstruct the original image and remove the blur by way of deconvolution. We discuss the deconvolution process, which can be implemented either with direct matrix inversion or with the Fourier quotient method. We observe that the process introduces a ``penalty in the form of a reduction in the signal-to-noise ratio (SNR) of a recovered image, compared to the SNR at which the blurred image data is collected. We estimate the magnitude of this penalty using an analytical approach and confirm the results with a series of numerical simulations. We find that the penalty is substantially reduced when the spacing between image samples is large compared to the telescope aperture. The penalty can be further reduced with suitable noise filtering, which can yield ${cal O}(10)$ or better improvement for low-quality imaging data. Our results confirm that it is possible to use the SGL for imaging purposes. We offer insights on the data collection and image processing strategies that could yield a detailed image of an exoplanet within image data collection times that are consistent with the duration of a realistic space mission.
We study image formation with the solar gravitational lens (SGL). We consider a point source that is positioned at a large but finite distance from the Sun. We assume that an optical telescope is positioned in the image plane, in the focal region of
We consider gravitational lensing by a generic extended mass distribution. We represent the static external gravitational field of the lens as a potential via an infinite set of symmetric trace free (STF) moments. We discuss the possibility of determ
We investigate the optical properties of the solar gravitational lens (SGL) with respect to an extended source located at a large but finite distance from the Sun. The static, spherically symmetric gravitational field of the Sun is modeled within the
We discuss the optical properties of the solar gravitational lens (SGL). We estimate the power of the EM field received by an imaging telescope. Studying the behavior of the EM field at the photometric detector, we develop expressions that describe t
We study the image formation process with the solar gravitational lens (SGL) in the case of an extended, resolved source. An imaging telescope, modeled as a convex lens, is positioned within the image cylinder formed by the light received from the so