ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Millisecond Periodicities in Type I X-ray Bursts of the Rapid Burster

172   0   0.0 ( 0 )
 نشر من قبل Derek W. Fox
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.W. Fox




اسأل ChatGPT حول البحث

We have searched the rising portion of type I X-ray bursts observed from the Rapid Burster with the Rossi X-ray Timing Explorer for the presence of periodicities. The 95 per cent confidence upper limit on the average root-mean-square variation of near coherent pulsations with a width of <1 Hz (in 60--2048 Hz) during the first second of the bursts is <8.8 per cent. We find a possible detection (>98 per cent significance) at 306.5 Hz.



قيم البحث

اقرأ أيضاً

We observed the Rapid Burster with Chandra when it was in the banana state that usually precedes the type-II X-ray bursting island state for which the source is particularly known. We employed the High-Energy Transmission Grating Spectrometer in comb ination with the ACIS-S detector in continuous clocking mode. The observation yielded 20 thermonuclear type-I X-ray bursts emitted from the neutron star surface with recurrence times between 0.9 and 1.2 hr, and an e-folding decay time scale of 1 min. We searched for narrow spectral features in the burst emission that could constrain the composition of the ashes of the nuclear burning and the compactness of the neutron star, but found none. The upper limit on the equivalent width of narrow absorption lines between 2 and 6 keV is between 5 and 20 eV (single trial 3 sigma confidence level) and on those of absorption edges between 150 and 400 eV. The latter numbers are comparable to the levels predicted by Weinberg, Bildsten & Schatz (2006) for Eddington-limited thermonuclear bursts.
We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the persistent AMXPs SAX J1808.4 -3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other two persistent pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the distance of 6.9 kpc. We discuss the implications of our results for models of the burst oscillation mechanism.
216 - A. Parikh , J. Jose , G. Sala 2012
Type I X-ray bursts are thermonuclear explosions that occur in the envelopes of accreting neutron stars. Detailed observations of these phenomena have prompted numerous studies in theoretical astrophysics and experimental nuclear physics since their discovery over 35 years ago. In this review, we begin by discussing key observational features of these phenomena that may be sensitive to the particular patterns of nucleosynthesis from the associated thermonuclear burning. We then summarize efforts to model type I X-ray bursts, with emphasis on determining the nuclear physics processes involved throughout these bursts. We discuss and evaluate limitations in the models, particularly with regard to key uncertainties in the nuclear physics input. Finally, we examine recent, relevant experimental measurements and outline future prospects to improve our understanding of these unique environments from observational, theoretical and experimental perspectives.
Despite the unique X-ray behavior of the compact bursting X-ray source MXB1730-335, the Rapid Burster (RB) in the highly reddened globular cluster Liller 1, to date there has been no known optical/IR counterpart for the object, no precise astrometric solution that correlates X-ray, radio, and optical positions and thus restricts the number of possible candidates, nor even published IR images of the field. We solve a previous radio/X-ray positional discrepancy, presenting the results of precise Chandra X-ray imaging, which definitively show that the radio source is positionally aligned with MXB1730-335. At the same time, we have detected three additional low luminosity (Lx~10e34 erg/s) X-ray sources within two core radii, which are possibly quiescent low-mass X-ray binaries. We present both ground-based and Hubble Space Telescope infrared imaging of the field (in quiescent and bursting X-ray states of the RB), together with the necessary astrometric solution to overlay the radio/X-ray source positions. Even at HST resolution, the RB field is very complex and there are multiple candidates. No object of unusual color, or of substantial variability in quiescent versus active or burst versus non-burst states, is identified. Further, more sensitive HST/NICMOS and/or ground-based adaptive-optics observations are needed to confidently identify the proper counterpart. In the case of the RB, uncertain but plausible calculations on the effects of the burst on the binary companion indicate that detection of a variable candidate should be feasible.
155 - H. L. Marshall 2001
We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 mini-bursts which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا