ترغب بنشر مسار تعليمي؟ اضغط هنا

Type I X-ray bursts and burst oscillations in the accreting millisecond X-ray pulsar IGR J17511-3057

193   0   0.0 ( 0 )
 نشر من قبل Diego Altamirano
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the persistent AMXPs SAX J1808.4-3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other two persistent pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the distance of 6.9 kpc. We discuss the implications of our results for models of the burst oscillation mechanism.



قيم البحث

اقرأ أيضاً

IGR J17511-3057 is the second X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about a month from September 13, 2009. The broad-band average spectrum is well described by thermal Comptonization with an elect ron temperature of kT_e ~ 25 keV, soft seed photons of kT_bb ~ 0.6 keV, and Thomson optical depth tau_T ~ 2 in a slab geometry. During the outburst the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth being constant within errors. We fitted the outburst profile with the exponential model, and using the disk instability model we inferred the outer disk radius to be (4.8 - 5.4) times 1010 cm. The INTEGRAL and RXTE data reveal the X-ray pulsation at a period of 4.08 milliseconds up to ~ 120 keV. The pulsed fraction is shown to decrease from ~22% at 3 keV to a constant pulsed fraction of ~17-18% between 7-30 keV, and then to decrease again down to ~13% at 60 keV. The nearly sinusoidal pulses show soft lags monotonically increasing with energy to about 0.2 ms at 10-20 keV similar to those observed in other accreting pulsars. The short burst profiles indicate hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of 2 times solar. However, the variation of burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.
128 - A. Ibragimov 2011
The twelfth accretion-powered millisecond pulsar, IGR J17511-3057, was discovered in September 2009. In this work we study its spectral and timing properties during the 2009 outburst based on Swift and RXTE data. Our spectral analysis of the source i ndicates only slight spectral shape evolution during the entire outburst. The equivalent width of the iron line and the apparent area of the blackbody emission associated with the hotspot at the stellar surface both decrease significantly during the outburst. This is consistent with a gradual receding of the accretion disc as the accretion rate drops. The pulse profile analysis shows absence of dramatic shape evolution with a moderate decrease in pulse amplitude. This behaviour might result from a movement of the accretion column footprint towards the magnetic pole as the disc retreats. The time lag between the soft and the hard energy pulses increase by a factor of two during the outburst. A physical displacement of the centroid of the accretion shock relative to the blackbody spot or changes in the emissivity pattern of the Comptonization component related to the variations of the accretion column structure could cause this evolution. We have found that IGR J17511-3057 demonstrates outburst stages similar to those seen in SAX J1808.4-3658. A transition from the slow decay into the rapid drop stage, associated with the dramatic flux decrease, is also accompanied by a pulse phase shift which could result from an appearance of the secondary spot due to the increasing inner disc radius.
IGR J17591$-$2342 is a new accreting millisecond X-ray pulsar (AMXP) that was recently discovered in outburst in 2018. Early observations revealed that the sources radio emission is brighter than that of any other known neutron star low-mass X-ray bi nary (NS-LMXB) at comparable X-ray luminosity, and assuming its likely $gtrsim 6$ kpc distance. It is comparably radio bright to black hole LMXBs at similar X-ray luminosities. In this work, we present the results of our extensive radio and X-ray monitoring campaign of the 2018 outburst of IGR J17591$-$2342. In total we collected 10 quasi-simultaneous radio (VLA, ATCA) and X-ray (Swift-XRT) observations, which make IGR J17591$-$2342 one of the best-sampled NS-LMXBs. We use these to fit a power-law correlation index $beta = 0.37^{+0.42}_{-0.40}$ between observed radio and X-ray luminosities ( $L_mathrm{R}propto L_mathrm{X}^{beta}$). However, our monitoring revealed a large scatter in IGR J17591$-$2342s radio luminosity (at a similar X-ray luminosity, $L_mathrm{X} sim 10^{36}$ erg s$^{-1}$, and spectral state), with $L_mathrm{R} sim 4 times 10^{29}$ erg s$^{-1}$ during the first three reported observations, and up to a factor of 4 lower $L_mathrm{R}$ during later radio observations. Nonetheless, the average radio luminosity of IGR J17591$-$2342 is still one of the highest among NS-LMXBs, and we discuss possible reasons for the wide range of radio luminosities observed in such systems during outburst. We found no evidence for radio pulsations from IGR J17591$-$2342 in our Green Bank Telescope observations performed shortly after the source returned to quiescence. Nonetheless, we cannot rule out that IGR J17591$-$2342 becomes a radio millisecond pulsar during quiescence.
We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191-2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency differe nce between these kHz QPOs is between 315 Hz and 362 Hz. We also report on the detection of five thermonuclear type-I X-ray bursts and the discovery of burst oscillations at ~294 Hz during three of them. Finally, we report on a faint and short outburst precursor, which occurred about two months before the main outburst. Our results on the broadband spectral and variability properties allow us to firmly establish the atoll source nature of IGR J17191-2821.
We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2)E-9 erg/cm$^2$/s and decayed to quiescence in approxi mately a month. The X-ray spectrum was dominated by a power-law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature > 20 keV . A broad ({sigma} ~ 1 keV) emission line was detected at an energy (E = 6.9$^{+0.2}_{-0.3}$ keV) compatible with the K{alpha} transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible with the value observed in 2009. Assuming that the source spun up during the 2015 outburst at the same rate observed during the previous outburst, we derive a conservative upper limit on the spin down rate during quiescence of 3.5E-15 Hz/s. Interpreting this value in terms of electromagnetic spin down yields an upper limit of 3.6E26 G/cm$^3$ to the pulsar magnetic dipole (assuming a magnetic inclination angle of 30{deg}). We also report on the detection of five type-I X-ray bursts (three in the XMM-Newton data, two in the INTEGRAL data), none of which indicated photospheric radius expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا