ترغب بنشر مسار تعليمي؟ اضغط هنا

Environment-based selection effects of Planck clusters

45   0   0.0 ( 0 )
 نشر من قبل Ralf Kosyra
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate whether the large scale structure environment of galaxy clusters imprints a selection bias on Sunyaev Zeldovich (SZ) catalogs. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or contain point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalog (Planck Collab- oration et al. 2013a) in the SDSS region as our sample of SZ selected clusters. We calculate the angular two-point correlation function (2pcf) for physically correlated, foreground and background structure in the RedMaPPer SDSS DR8 catalog with respect to each cluster. We compare our results with an optically selected comparison cluster sample and with theoretical predictions. In contrast to the hypothesis of no environment-based selection, we find a mean 2pcf for background structures of -0.049 on scales of $lesssim 40$, significantly non-zero at $sim 4 sigma$, which means that Planck clusters are more likely to be detected in regions of low background density. We hypothesize this effect arises either from background estimation in the SZ survey or from radio sources in the background. We estimate the defect in SZ signal caused by this effect to be negligibly small, of the order of $sim 10^{-4}$ of the signal of a typical Planck detection. Analogously, there are no implications on X-ray mass measurements. However, the environ- mental dependence has important consequences for weak lensing follow up of Planck galaxy clusters: we predict that projection effects account for half of the mass contained within a 15 radius of Planck galaxy clusters. We did not detect a background underdensity of CMASS LRGs, which also leaves a spatially varying redshift dependence of the Planck SZ selection function as a possible cause for our findings.

قيم البحث

اقرأ أيضاً

We present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5<S/N<5.3 in the same 10-month survey maps used in th e construction of the Early SZ sample. The sample was selected in order to test internal SZ quality flags, and the pertinence of these flags is discussed in light of the validation results. Ten of the candidates are found to be bona fide clusters lying below the RASS flux limit. Redshift estimates are available for all confirmed systems via X-ray Fe-line spectroscopy. They lie in the redshift range 0.19<z<0.94, demonstrating Plancks capability to detect clusters up to high z. The X-ray properties of the new clusters appear to be similar to previous new detections by Planck at lower z and higher SZ flux: the majority are X-ray underluminous for their mass, estimated using Y_X as mass proxy, and many have a disturbed morphology. We find tentative indication for Malmquist bias in the Y_SZ-Y_X relation, with a turnover at Y_SZ sim 4 e-4 arcmin^2. We present additional new optical redshift determinations with ENO and ESO telescopes of candidates previously confirmed with XMM-Newton. The X-ray and optical redshifts for a total of 20 clusters are found to be in excellent agreement. We also show that useful lower limits can be put on cluster redshifts using X-ray data only via the use of the Y_X vs. Y_SZ and X-ray flux F_X vs. Y_SZ relations.
We perform an extensive analysis of optical counterparts of Planck PSZ2 clusters, considering matches with three recent catalogs built from SDSS data: AMF DR9, redMaPPer (v6.3) and Wen et al (WHL). We significantly extend the number of optical counte rparts of detected Planck clusters, and characterize the optical properties when multiple identifications in different catalogs exist. For Planck clusters which already possess an external validation, we analyze the redshift assignment for both optical and X--ray determinations. We then analyze the Planck Cosmology sample and comment on redshift determination and potential mass mis-determinations due to alignment issues. Finally, we inspect the reconstructed $y$ map from Planck and reason on the detectability of optical clusters. Overall, AMF DR9 main (extended) finds 485 (511) optical matches, with 45 (55) previously unmatched PSZ2 clusters, to be compared with the 374 optical matches already present in PSZ2. 29 of the 55 previously unmatched clusters do not yet have a followup in the literature. 18 of these are found in more than one SDSS catalog with consistent redshifts. We provide redshift and mass estimates for the newly matched clusters, and discuss the comparison with the follow-ups, when present. We find good agreement between the redMaPPer and AMF DR9 redshift determinations. From the Planck Cosmology sample, we find 14 clusters which merit further investigation, and discuss possible alignment issues for 9 of these clusters. After inspecting the $y$ map, we provide a list of 229 optical clusters not included in the Planck PSZ2 catalog but showing a prominent $y$ signal. We have further investigated the 86 clusters with Planck S/N $>4.5$ using the MMF technique (applied to the Planck HFI maps), and were able to detect 20 new cluster candidates that are not included in the PSZ2 catalog.
In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-le nsing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of $left< M_{Planck}/M_{rm WtG} right> = 0.688 pm 0.072$. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of $left< M_{Planck}/M_{rm WtG} right> = 0.698 pm 0.062$ from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are $sim 1.6sigma$ lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for new physics such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.
We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5-m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. Durin g this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6-m Bolshoy Telescope Azimutalny (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redhifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.
125 - E. Daddi , S. Jin , V. Strazzullo 2017
We show that the most distant X-ray detected cluster known to date, ClJ1001 at z=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10) in deep 0.75 resolution VLA 3GHz imaging, with S(3GHz)>8uJy. Of the six, AGN likely affects the radio emission in two galaxies while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2-square degree field using radio-detected 3GHz sources and looking for peaks in Sigma5 density maps. ClJ1001 is the strongest overdensity by far with >10sigma, with a simple z_phot>1.5 preselection. A cruder photometric rejection of z<1 radio foregrounds leaves ClJ1001 as the second strongest overdensity, while even using all radio sources ClJ1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future, deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z>2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا