ﻻ يوجد ملخص باللغة العربية
We present imaging results from a high Galactic latitude survey designed to examine the structure of the Galactic halo. The objective of the survey is to identify candidate halo stars which can be observed spectroscopically to obtain radial velocities and confirm halo membership. The Washington filter system is used for its ability to distinguish between dwarfs and giants, as well as provide a metallicity indicator. Our most successful imaging run used the BTC camera on the CTIO 4m telescope in April 1999. Photometric conditions during these observations provided superb photometry, with average errors for a star at $M=18.5$ of 0.009, 0.008, 0.011, and 0.009 for $C$, $M$, $DDO51$, and $T2$ respectively. These data are available with the electronic version of this paper, as well as through ADC (http://adc.gsfc.nasa.gov/). We use these data as a template to describe the details of our photometric reduction process. It is designed to perform CCD reductions and stellar photometry automatically during the observation run without the aid of external packages, such as IRAF and IDL. We describe necessary deviations from this procedure for other instruments used in the survey up to June 2000. Preliminary results from spectroscopic observations indicate a 97% efficiency in eliminating normal dwarfs from halo giant candidates for $M<18.5$. Unfortunately, low-metallicity subdwarfs cannot be photometrically distinguished from giants using the Washington filters. These major contaminates unavoidably reduced the overall giant identification efficiency to 66% for $M<18.5$. Our improved knowledge of these stars will increase this efficiency for future spectroscopic observations.
We describe a major survey of the Milky Way halo designed to test for kinematic substructure caused by destruction of accreted satellites. We use the Washington photometric system to identify halo stars efficiently for spectroscopic followup. Tracers
We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed g
Our goal is to recover the Galactic Halo spatial density by means of field stars. To this aim, we apply a new technique to the Capodimonte Deep Field (OACDF, Alcala et al. 2004), as a pilot study in view of the VLT Survey Telescope (VST) stellar proj
We use 666 blue horizontal branch (BHB) stars from the 2Qz redshift survey to map the Galactic halo in four dimensions (position, distance and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single
Modern theories of galaxy formation predict that the Galactic stellar halo was hierarchically assembled from the accretion and disruption of smaller systems. This hierarchical assembly is expected to produce a high degree of structure in the combined