ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping the Galactic Halo with blue horizontal branch stars from the 2dF quasar redshift survey

120   0   0.0 ( 0 )
 نشر من قبل Roberto de Propris
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 666 blue horizontal branch (BHB) stars from the 2Qz redshift survey to map the Galactic halo in four dimensions (position, distance and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index ~-2.5 in two different directions separated by 150 degrees on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase towards large radii while the stellar velocity distribution is non Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.



قيم البحث

اقرأ أيضاً

We use the Pristine survey CaHK narrow-band photometry, combined with the SDSS ugr photometry, to provide a cleaner sample of blue horizontal branch stars in the Galactic halo out to large distances. We demonstrate a completeness of 91% and a purity of 93% with respect to available spectroscopic classifications. We subsequently use our new clean sample of these standard candles to investigate the substructure in the Galactic halo over the Pristine footprint. Among other features, this allows for a careful tracing of multiple parts of the Sagittarius stream, providing a measurement independent from other tracers used and reaching larger distances. Moreover, we demonstrate with this clean and complete sample that the halo follows a density profile with a negative power-law slope of 3.5 - 4.0. As the relatively shallow SDSS u-band is the limiting factor in this technique, we foresee large potential for combining Pristine survey photometry with the much deeper u-band photometry from the Canada-France-Imaging Survey.
We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
We present an analysis of the relative age distribution of the Milky Way halo, based on samples of blue horizontal-branch (BHB) stars obtained from the Panoramic Survey Telescope and Rapid Response System and textit{Galaxy Evolution Explorer} photome try, as well a Sloan Digital Sky Survey spectroscopic sample. A machine-learning approach to the selection of BHB stars is developed, using support vector classification, with which we produce chronographic age maps of the Milky Way halo out to 40,kpc from the Galactic center. We identify a characteristic break in the relative age profiles of our BHB samples, corresponding to a Galactocentric radius of $R_{rm{GC}} sim 14$,kpc. Within the break radius, we find an age gradient of $-63.4 pm 8.2$ Myr kpc$^{-1}$, which is significantly steeper than obtained by previous studies that did not discern between the inner- and outer-halo regions. The gradient in the relative age profile and the break radius signatures persist after correcting for the influence of metallicity on our spectroscopic calibration sample. We conclude that neither are due to the previously recognized metallicity gradient in the halo, as one passes from the inner-halo to the outer-halo region. Our results are consistent with a dissipational formation of the inner-halo population, involving a few relatively massive progenitor satellites, such as those proposed to account for the assembly of textit{Gaia}-Enceladus, which then merged with the inner halo of the Milky Way.
Although Blue Horizontal Branch (BHB) stars are commonly used to trace halo substructure, the stars bluer than (g-r)<-0.3 are ignored due to the difficulty in determining their absolute magnitudes. The blue extention of the horizontal branch (HBX) in cludes BHB tail stars and Extreme Horizontal Branch (EHB) stars. We present a method for identifying HBX stars in the field, using spectra and photometry from the Sloan Digital Sky Survey Data Release 14 (SDSS DR14). We derive an estimate for the absolute magnitudes of BHB tail and EHB stars as a function of color, and use this relationship to calculate distances. We identify an overdensity of HBX stars that appears to trace the northern end of the Hercules-Aquila Cloud (HAC). We identify three stars that are likely part of a tidal stream, but this is not enough stars to explain the observed overdensity. Combining SDSS data with Gaia DR2 proper motions allows us to show that the orbits of the majority of the HBX stars in the overdensity are on high eccentricity orbits similar to those in the Virgo Radial Merger/Gaia-Enceladus/Gaia Sausage structure, and that the overdensity of high eccentricity orbits extends all the way to the Virgo Overdensity. We use stellar kinematics to separate the HBX stars into disk stars andhalo stars. The halo stars are primarily on highly eccentric (radial) orbits. The fraction of HBX stars that are EHBs is highest in the disk population and lowest in the low eccentricity halo stars.
The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitt ed using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ~70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ~2 kpc to -4 in the outer halo, with an axis ratio ~0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with $beta_s$ varying from isotropic to between ~0.1 and ~0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc$^{-1}$, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا