ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalues of the Stewart-Lyth equation for inflation with a blue spectrum

48   0   0.0 ( 0 )
 نشر من قبل Franz Schunck
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the rather stringent nonlinear second order slow-roll approximation, we reconsider the nonlinear second order Abel equation of Stewart and Lyth. We determine a new blue eigenvalue spectrum. Some of the discrete values of the spectral index $n_s$ have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.

قيم البحث

اقرأ أيضاً

We provide strong evidence for universality of the inflationary field range: given an accurate measurement of $(n_s,r)$, one can infer $Delta phi$ in a model-independent way in the sub-Planckian regime for a range of universality classes of inflation ary models. Both the tensor-to-scalar ratio as well as the spectral tilt are essential for the field range. Given the Planck constraints on $n_s$, the Lyth bound is strengthened by two orders of magnitude: whereas the original bound gives a sub-Planckian field range for $r lesssim 2 cdot 10^{-3}$, we find that $n=0.96$ brings this down to $r lesssim 2 cdot 10^{-5}$.
Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter $epsilon$ can be sizable during an early period (relevant for the CMB spectrum). Subsequently, $epsilon$ quickly becomes very small before the tachyonic instability eventually terminates the slow roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.
We propose a novel mechanism for enhancing the primordial gravitational waves without significantly affecting the curvature perturbations produced during inflation. This is achieved due to non-linear sourcing of resonantly amplified scalar field fluc tuations. Our result is an explicit scale-dependent counter-example of the famous Lyth bound, which opens up a promising perspective of producing detectable inflationary tensor modes with low-scale inflation and a sub-Planckian field excursion. We explicitly demonstrate the testability of our mechanism with upcoming Cosmic Microwave Background B-mode observations.
We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n _s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.
It is known that if the Peccei-Quinn symmetry breaking field is displaced from its minimum during inflation, the axion isocurvature spectrum is generically strongly blue tilted with a break transition to a flat spectrum. We fit this spectrum (incorpo rated into the vanilla $Lambda$-CDM cosmological model) to the Planck and BOSS DR11 data and find a mild hint for the presence of axionic blue-tilted isocurvature perturbations. We find the best fit parameter region is consistent with all of the dark matter being composed of QCD axions in the context of inflationary cosmology with an expansion rate of order $10^{8}$ GeV, the axion decay constant of order $10^{13}$ GeV, and the initial misalignment angle of order unity. Intriguingly, isocurvature with a spectral break may at least partially explain the low-$ell$ vs. high-$ell$ anomalies seen in the CMB data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا