ﻻ يوجد ملخص باللغة العربية
In this Letter we propose a simple thermal comptonization model to account for the observed properties of the phase lags associated to the ``plateau intervals of GRS 1915+105. By invoking a temperature stratification in a corona and assuming that the optical depth of the comptonizing region increases as the disk inner radius moves inward, we are able to reproduce both the observed colors and time lags in the continuum.
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been
We present a study of the centroid frequencies and phase lags of the quasi-periodic oscillations (QPOs) as functions of photon energy for GRS 1915+105. It is found that the centroid frequencies of the 0.5-10 Hz QPOs and their phase lags are both ener
We propose a scenario for a periodic filling and emptying of the accretion disc of GRS 1915+105, by computing the mass transfer rate from the donor and comparing it with the observed accretion rate. The binary parameters found by Greiner et al. (2001
We present data from the first of six monitoring Open Time observations of GRS 1915+105 undertaken with the orbiting INTEGRAL satellite. The source was clearly detected with all three X-ray and gamma-ray instruments on board. GRS 1915+105 was in a hi
We performed an analysis of all RXTE observations of the Low Mass X-ray Binary and Black Hole Candidate IGR J17091-3624 during the 2011-2013 outburst of the source. By creating lightcurves, hardness-intensity diagrams and power density spectra of eac