ترغب بنشر مسار تعليمي؟ اضغط هنا

The energy dependence of the centroid frequency and phase lag of the QPOs in GRS 1915+105

255   0   0.0 ( 0 )
 نشر من قبل Jinlu Qu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. L. Qu




اسأل ChatGPT حول البحث

We present a study of the centroid frequencies and phase lags of the quasi-periodic oscillations (QPOs) as functions of photon energy for GRS 1915+105. It is found that the centroid frequencies of the 0.5-10 Hz QPOs and their phase lags are both energy dependent, and there exists an anti-correlation between the QPO frequency and phase lag. These new results challenge the popular QPO models, because none of them can fully explain the observed properties. We suggest that the observed QPO phase lags are partially due to the variation of the QPO frequency with energy, especially for those with frequency higher than 3.5 Hz.



قيم البحث

اقرأ أيضاً

In this Letter we propose a simple thermal comptonization model to account for the observed properties of the phase lags associated to the ``plateau intervals of GRS 1915+105. By invoking a temperature stratification in a corona and assuming that the optical depth of the comptonizing region increases as the disk inner radius moves inward, we are able to reproduce both the observed colors and time lags in the continuum.
We report the results of a systematic timing analysis of all archival Rossi X-Ray Timing Explorer (RXTE) observations of the bright black-hole binary GRS 1915+105 in order to detect high-frequency quasi-periodic oscillations (HFQPO). We produced powe r-density spectra in two energy bands and limited the analysis to the frequency range 30-1000 Hz. We found 51 peaks with a single trial significance larger than 3 sigma. As all but three have centroid frequencies that are distributed between 63 and 71 Hz, we consider most of them significant regardless of the number of trials involved. The average centroid frequency and FWHM are 67.3 +/- 2.0 Hz and 4.4 +/- 2.4 Hz respectively. Their fractional rms varies between 0.4% and 2% (total band detections) and between 0.5% and 3% (hard ban detections). As GRS 1915+105 shows large variability on time scales longer than 1s, we analysed the data in 16s intervals and found that the detections are limited to a specific region in the colour-colour diagram, corresponding to state B of the source, when the energy spectrum is dominated by a bright accretion disk component. However, the rms spectrum of the HFQPO is very hard and does not show a flattening up to 40 keV, where the fractional rms reaches 11%. We discuss our findings in terms of current proposed models and compare them with the results on other black-hole binaries and neutron-star binaries.
We estimate the black hole spin parameter in GRS 1915+105 using the continuum-fitting method with revised mass and inclination constraints based on the very long baseline interferometric parallax measurement of the distance to this source. We fit Ros si X-ray Timing Explorer observations selected to be accretion disk-dominated spectral states as described in McClinotck et al. (2006) and Middleton et al. (2006), which previously gave discrepant spin estimates with this method. We find that, using the new system parameters, the spin in both datasets increased, providing a best-fit spin of $a_*=0.86$ for the Middleton et al. data and a poor fit for the McClintock et al. dataset, which becomes pegged at the BHSPEC model limit of $a_*=0.99$. We explore the impact of the uncertainties in the system parameters, showing that the best-fit spin ranges from $a_*= 0.4$ to 0.99 for the Middleton et al. dataset and allows reasonable fits to the McClintock et al. dataset with near maximal spin for system distances greater than $sim 10$ kpc. We discuss the uncertainties and implications of these estimates.
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the $rho$ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. T he source shows 50 sec limit cycle oscillations. By including new information provided by the reflection spectrum, and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ~10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500-5000 km/s, and possibly two more with velocities reaching 20,000 km/s (~0.06 c). The column densities are ~5e22 cm$^{-2}$. An upper limit to the wind response time of 2 sec is measured, implying a launch radius of <6e10 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290 - 1300 rg from the black hole. Both datasets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
134 - J. M. Miller 2016
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lowe r sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk, and B ~ 10^(4-5) Gauss if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model (Shakura & Sunyaev 1973). We discuss these results in terms of fundamental disk physics and black hole accretion modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا