ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-Infrared Spectral Variability Atlas of Young Stellar Objects

87   0   0.0 ( 0 )
 نشر من قبل \\'Agnes K\\'osp\\'al
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate mass young stellar objects. The atlas consists of 2.5-11.6 um low-resolution spectra obtained with the ISOPHOT-S instrument on-board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 um low-resolution spectra obtained with the IRS instrument on-board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rate. In several systems, all exhibiting 10 um silicate emission, the variability of the 6-8 um continuum and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular the wavelength-dependent changes, are more ubiquitous than was known before. Interpreting this variability is a new possibility to explore the structure of the disk and its dynamical processes.

قيم البحث

اقرأ أيضاً

We present a time-variability study of young stellar objects in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 micron with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability project (YSOVAR). We have collec ted light curves for 181 cluster members over 40 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability time scales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer time scales than the X-ray undetected members.
211 - B. Stecklum 2017
Methanol and water masers indicate young stellar objects. They often exhibit flares, and a fraction shows periodic activity. Several mechanisms might explain this behavior but the lack of concurrent infrared (IR) data complicates to identify the caus e. Recently, 6.7 GHz methanol maser flares were observed, triggered by accretion bursts of high-mass YSOs which confirmed the IR-pumping of these masers. This suggests that regular IR changes might lead to maser periodicity. Hence, we scrutinized space-based IR imaging of YSOs associated with periodic methanol masers. We succeeded to extract the IR light curve from NEOWISE data for the intermediate mass YSO G107.298+5.639. Thus, for the first time a relationship between the maser and IR variability could be established. While the IR light curve shows the same period of ~34.6 days as the masers, its shape is distinct from that of the maser flares. Possible reasons for the IR periodicity are discussed.
The very inner structure of massive young stellar objects (YSOs) is difficult to trace. With conventional observational methods we identify structures still several hundreds of AU in size. However, the (proto-)stellar growth takes place at the innerm ost regions (<100 AU) where the actual mass transfer onto the forming high-mass star occurs. We present results from our programme toward massive YSOs at the VLTI, utilising the two-element interferometer MIDI. To date, we observed 10 well-known massive YSOs down to scales of 20 mas (typically corresponding to 20 - 40 AU for our targets) in the 8-13 micron region. We clearly resolve these objects which results in low visibilities and sizes in the order of 30-50 mas. For two objects, we show results of our modelling. We demonstrate that the MIDI data can reveal decisive structure information for massive YSOs. They are often pivotal in order to resolve ambiguities still immanent in model parameters derived from sole SED fitting.
109 - L. M. Rebull 2014
The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming c ores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the standard sample on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a standard sample of members, consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.
We discuss VLTI AMBER and MIDI interferometry in addition to single-dish Subaru observations of massive young stellar objects. The observations probe linear size scales between 10 to 1000 AU for the average distance of our sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا