ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Optical Followup Observations of SGR Events with ROTSE-I

230   0   0.0 ( 0 )
 نشر من قبل Richard Balsano
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to observe nearly simultaneous emission from Gamma-ray Bursts (GRBs), the Robotic Optical Transient Search Experiment (ROTSE) receives triggers via the GRB Coordinates Network (GCN). Since beginning operations in March, 1998, ROTSE has also taken useful data for 10 SGR events: 8 from SGR 1900+14 and 2 from SGR 1806-20. We have searched for new or variable sources in the error regions of these SGRs and no optical counterparts were observed. Limits are in the range m_ROTSE ~ 12.5 - 15.5 during the period 20 seconds to 1 hour after the observed SGR events.

قيم البحث

اقرأ أيضاً

We investigate the effects of observatory locations on the probability of discovering optical/infrared counterparts of gravitational wave sources. We show that for the LIGO--Virgo network, the odds of discovering optical/infrared (OIR) counterparts s how some latitude dependence, but weak or no longitudinal dependence. A stronger effect is seen to arise from the timing of LIGO/Virgo observing runs, with northern OIR observatories having better chances of finding the counterparts in northern winters. Assuming identical technical capabilities, the tentative mid-2017 three-detector network observing favors southern OIR observatories for discovery of EM counterparts.
59 - J. Wren , C. Akerlof , R. Balsano 2001
The X-ray nova XTE J1118+480 exhibited two outbursts in the early part of 2000. As detected by the Rossi X-ray Timing Explorer (RXTE), the first outburst began in early January and the second began in early March. Routine imaging of the northern sky by the Robotic Optical Transient Search Experiment (ROTSE) shows the optical counterpart to XTE J1118+480 during both outbursts. These data include over 60 epochs from January to June 2000. A search of the ROTSE data archives reveal no previous optical outbursts of this source in selected data between April 1998 and January 2000. While the X-ray to optical flux ratio of XTE J1118+480 was low during both outbursts, we suggest that they were full X-ray novae and not mini-outbursts based on comparison with similar sources. The ROTSE measurements taken during the March 2000 outburst also indicate a rapid rise in the optical flux that preceded the X-ray emission measured by the RXTE by approximately 10 days. Using these results, we estimate a pre-outburst accretion disk inner truncation radius of 1.2 x 10^4 Schwarzschild radii.
48 - Gavin Ramsay 2006
The RApid Temporal Survey (RATS) is a survey to detect objects whose optical intensity varies on timescales of less than ~70 min. In our pilot dataset taken with the INT and the Wide Field Camera in Nov 2003 we discovered nearly 50 new variable objec ts. Many of these varied on timescales much longer than 1 hr. However, only 4 objects showed a modulation on a timescale of 1 hour or less. This paper presents followup optical photometry and spectroscopy of these 4 objects. We find that RAT J0455+1305 is a pulsating (on a period of 374 sec) subdwarf B (sdB) star of the EC 14026 type. We have modelled its spectrum and determine Teff = 29,200+/- 1900K and log g = 5.2+/-0.3 which locates it on the cool edge of the EC 14026 instability strip. It has a modulation amplitude which is one of the highest of any known EC 14026 star. Based on their spectra, photometric variability and their infra-red colours, we find that RAT J0449+1756, RAT J0455+1254 and RAT J0807+1510 are likely to be SX Phe stars - dwarf Delta Sct stars. Our results show that our observing strategy is a good method for finding rare pulsating stars.
Recently we have witnessed the first multi-messenger detection of colliding neutron stars through Gravitational Waves (GWs) and Electromagnetic (EM) waves (GW170817), thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In thi s paper, we report on the RATIR followup observation strategies and show the results for the trigger G194575. This trigger is not of astrophysical interest; however, is of great interests to the robust design of a followup engine to explore large sky error regions. We discuss the development of an image-subtraction pipeline for the 6-color, optical/NIR imaging camera RATIR. Considering a two band ($i$ and $r$) campaign in the Fall of 2015, we find that the requirement of simultaneous detection in both bands leads to a factor $sim$10 reduction in false alarm rate, which can be further reduced using additional bands. We also show that the performance of our proposed algorithm is robust to fluctuating observing conditions, maintaining a low false alarm rate with a modest decrease in system efficiency that can be overcome utilizing repeat visits. Expanding our pipeline to search for either optical or NIR detections (3 or more bands), considering separately the optical $riZ$ and NIR $YJH$ bands, should result in a false alarm rate $approx 1%$ and an efficiency $approx 90%$. RATIRs simultaneous optical/NIR observations are expected to yield about one candidate transient in the vast 100 $mathrm{deg^2}$ LIGO error region for prioritized followup with larger aperture telescopes.
68 - X. H. Cui , X. F. Wu , J. J. Wei 2014
We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-sampl es: detected afterglows (18 GRBs), and those with upper limits (40 GRBs). The $R$ band fluxes 100s after the onset of the burst for these two sub-samples are derived. The optical LFs at 100s are fitted by assuming that the co-moving GRB rate traces the star-formation rate. The detection function of ROTSE-III is taken into account during the fitting of the optical LFs by using Monte Carlo simulations. We find that the cumulative distribution of optical emission at 100s is well-described with an exponential rise and power-law decay (ERPLD), broken power-law (BPL), and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا