ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Templates from Multicolor Redshift Surveys

43   0   0.0 ( 0 )
 نشر من قبل Tamas Budavari
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tamas Budavari




اسأل ChatGPT حول البحث

Understanding how the physical properties of galaxies (e.g. their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that galaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.


قيم البحث

اقرأ أيضاً

We built an optimal basis of low resolution templates for galaxies over the wavelength range from 0.2 to 10 $mu$m using a variant of the algorithm presented by Budavari et al. (2000). We derived them using eleven bands of photometry from the NDWFS, F LAMEX, zBootes and IRAC Shallow surveys for 16033 galaxies in the NDWFS Bootes field with spectroscopic redshifts measured by the AGN and Galaxy Evolution Survey. We also developed algorithms to accurately determine photometric redshifts, K corrections and bolometric luminosities using these templates. Our photometric redshifts have an accuracy of $sigma_z/(1+z) = 0.04$ when clipped to the best 95%. We used these templates to study the spectral type distribution in the field and to estimate luminosity functions of galaxies as a function of redshift and spectral type. In particular, we note that the 5-8$mu$m color distribution of galaxies is bimodal, much like the optical g--r colors.
69 - Ofer Lahav 2003
Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe , detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einsteins cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.
Cosmology with Type Ia supernovae heretofore has required extensive spectroscopic follow-up to establish a redshift. Though tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render this appro ach unsustainable. Photometry-based redshift determination is a viable alternative, but introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of photometry and statistical errors. With reasonable assumptions for a cadence and supernovae distribution, these redshift errors are combined with systematic errors and propagated using the Fisher matrix formalism to derive lower bounds on the joint errors in $Omega_w$ and $Omega_w$ relevant to the next generation of ground-based all-sky survey.
111 - Vincenzo Salzano 2016
We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade of [1,2], where it was argued that such signal could be detected at a single redshift location only. Here, w e show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, emph{WFirst-2.4} and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (BAO) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a $sim1%$ VSL signal can be detected at $3sigma$ confidence level in the redshift interval $z in [0.,1.55]$. Smaller signals $(sim0.1%)$ will be hardly detected (even if some lower possibility for a $1sigma$ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a $0.01$-order curvature in the same redhift range with a very high confidence.
The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP ) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond $Lambda$CDM. We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, $tau$, is known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا