ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Resolution Spectral Templates For Galaxies From 0.2 -- 10 microns

56   0   0.0 ( 0 )
 نشر من قبل Roberto Assef
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We built an optimal basis of low resolution templates for galaxies over the wavelength range from 0.2 to 10 $mu$m using a variant of the algorithm presented by Budavari et al. (2000). We derived them using eleven bands of photometry from the NDWFS, FLAMEX, zBootes and IRAC Shallow surveys for 16033 galaxies in the NDWFS Bootes field with spectroscopic redshifts measured by the AGN and Galaxy Evolution Survey. We also developed algorithms to accurately determine photometric redshifts, K corrections and bolometric luminosities using these templates. Our photometric redshifts have an accuracy of $sigma_z/(1+z) = 0.04$ when clipped to the best 95%. We used these templates to study the spectral type distribution in the field and to estimate luminosity functions of galaxies as a function of redshift and spectral type. In particular, we note that the 5-8$mu$m color distribution of galaxies is bimodal, much like the optical g--r colors.

قيم البحث

اقرأ أيضاً

42 - Tamas Budavari 2000
Understanding how the physical properties of galaxies (e.g. their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that g alaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.
84 - F. J. Lockman , J. Ott 2009
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for mation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute to further progress.
42 - Lei Hao 2005
We report the spectroscopic detection of silicate emission at 10 and 18 microns in five PG quasars, the first detection of these two features in galaxies outside the Local Group. This finding is consistent with the unification model for Active Galact ic Nuclei (AGNs), which predicts that an AGN torus seen pole-on should show a silicate emission feature in the mid-infrared. The strengths of the detected silicate emission features range from 0.12 to 1.25 times the continuum at 10 microns and from 0.20 to 0.79 times the continuum at 18 microns. The silicate grain temperatures inferred from the ratio of 18-to-10 micron silicate features under the assumption of optically thin emission range from 140 to 220K.
We describe a Herschel Space Observatory 194-671 micron spectroscopic survey of a sample of 121 local luminous infrared galaxies and report the fluxes of the CO $J$ to $J$-1 rotational transitions for $4 leqslant J leqslant 13$, the [NII] 205 um line , the [CI] lines at 609 and 370 um, as well as additional and usually fainter lines. The CO spectral line energy distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample, that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines primarily at $J lesssim 4$ and likely represents the same gas phase traced by CO (1-0), and (ii) a warm component, which dominates over the mid-$J$ regime ($4 < J < 10$) and is intimately related to current star formation. We present evidence that the CO line emission associated with an active galactic nucleus is significant only at $J > 10$. The flux ratios of the two [CI] lines imply modest excitation temperatures of 15 to 30 K; the [CI] 370 um line scales more linearly in flux with CO (4-3) than with CO (7-6). These findings suggest that the [CI] emission is predominately associated with the gas component defined in (i) above. Our analysis of the stacked spectra in different far-infrared (FIR) color bins reveals an evolution of the SLED of the rotational transitions of water vapor as a function of the FIR color in a direction consistent with infrared photon pumping.
Empirical models of supernova (SN) spectral energy distributions (SEDs) are widely used for SN survey simulations and photometric classifications. The existing library of SED models has excellent optical templates but limited, poorly constrained cove rage of ultraviolet (UV) and infrared (IR) wavelengths. However, both regimes are critical for the design and operation of future SN surveys, particularly at IR wavelengths that will be accessible with the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope (WFIRST). We create a public repository of improved empirical SED templates using a sampling of Type Ia and core-collapse (CC) photometric light curves to extend the Type Ia parameterized SALT2 model and a set of SN Ib, SN Ic, and SN II SED templates into the UV and near-IR. We apply this new repository of extrapolated SN SED models to examine how future surveys can discriminate between CC and Type Ia SNe at UV and IR wavelengths, and present an open-source software package written in Python, SNSEDextend, that enables a user to generate their own extrapolated SEDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا