ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray photoionized plasma diagnostics with Helium-like ions. Application to Warm Absorber-Emitter in Active Galactic Nuclei

131   0   0.0 ( 0 )
 نشر من قبل Delphine Porquet
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present He-like line ratios (resonance, intercombination and forbidden lines) for totally and partially photoionized media. For solar plasmas, these line ratios are already widely used for density and temperature diagnostics of coronal (collisional) plasmas. In the case of totally and partially photoionized plasmas, He-like line ratios allow for the determination of the ionization processes involved in the plasma (photoionization with or without an additional collisional ionization process), as well as the density and the electronic temperature. With the new generation of X-ray satellites, Chandra/AXAF, XMM and Astro-E, it will be feasible to obtain both high spectral resolution and high sensitivity observations. Thus in the coming years, the ratios of these three components will be measurable for a large number of non-solar objects. In particular, these ratios could be applied to the Warm Absorber-Emitter, commonly present in Active Galactic Nuclei (AGN). A better understanding of the Warm Absorber connection to other regions (Broad Line Region, Narrow Line Region) in AGN (Seyferts type-1 and type-2, low- and high-redshift quasars...) will be an important key to obtaining strong constraints on unified schemes. We have calculated He-like line ratios, for Z=6, 7, 8, 10, 12 and 14, taking into account the upper level radiative cascades which we have computed for radiative and dielectronic recombinations and collisional excitation. The atomic data are tabulated over a wide range of temperatures in order to be used for interpreting a large variety of astrophysical plasmas.

قيم البحث

اقرأ أيضاً

We review X-ray plasma diagnostics based on the line ratios of He-like ions. Triplet/singlet line intensities can be used to determine electronic temperature and density, and were first developed for the study of the solar corona. Since the launches of the X-ray satellites Chandra and XMM-Newton, these diagnostics have been extended and used (from CV to Si XIII) for a wide variety of astrophysical plasmas such as stellar coronae, supernova remnants, solar system objects, active galactic nuclei, and X-ray binaries. Moreover, the intensities of He-like ions can be used to determine the ionization process(es) at work, as well as the distance between the X-ray plasma and the UV emission source for example in hot stars. In the near future thanks to the next generation of X-ray satellites (e.g., Astro-H and IXO), higher-Z He-like lines (e.g., iron) will be resolved, allowing plasmas with higher temperatures and densities to be probed. Moreover, the so-called satellite lines that are formed closed to parent He-like lines, will provide additional valuable diagnostics to determine electronic temperature, ionic fraction, departure from ionization equilibrium and/or from Maxwellian electron distribution.
Using the new version of the photoionization code Titan designed for plane-parallel photoionized thick hot media, which is unprecedented from the point of view of line transfer, we have undertaken a study of the influence of different parameters on t he He-like and H-like emission of a medium photoionized by an X-ray source. We explain why in modelling the emitting medium it is important to solve in a self-consistent way the thermal and ionization equilibria and to take into account the interconnection between the different ions. We give the equivalent widths of the sum of the He-like triplets and the triplet intensity ratios $G$ and $R$, for the most important He-like ions, for a range of density, column density, and ionization parameter, in the case of constant density media. We show that the line intensities from a given ion can be accounted for, either by small values of both the column density and of the ionization parameter, or by large values of both quantities, and it is necessary to take into account several ions to disentangle these possibilities. We show also that a pure recombination spectrum almost never exists in a photoionized medium: either it is thin, and resonance lines are formed by radiative excitation, or it is thick, and free-bound absorption destroys the resonance photons as they undergo resonant diffusion.
Ionized outflows in Active Galactic Nuclei (AGN) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modelled ionization parameter. With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1 -- 2000 {AA} wavelength range. In the large density range of $n_H in (10^6, 10^{20} m^{-3}$, the metastable levels 2s 2p $(^3P_{0-2})$ in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s$^2$ 2p $(^2P_{3/2})$ can be used as a density probe. For C-like ions, the first two excited levels 2s$^2$ 2p$^2$ ($^3P_1$ and $^3P_2$) are better density probes than the next two excited levels 2s$^2$ 2p$^2$ ($^1S_0$ and $^1D_2$). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameter, but also a wide range of density. On the other hand, within the same isonuclear sequence, less ionized ions probe lower density and smaller ionization parameter. Finally, we re-analyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002, using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components, based on the presence (or absence) of the metastable absorption lines.
Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths, with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. Among the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog, 100 ones are currently identified as a non-blazar-type active galactic nucleus. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 $mu$m. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2 ones) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, $Gamma = 1.9$, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed at least in the Compton-thin regime. In contrast, NGC 1365, only one Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei were briefly discussed.
We propose a novel theoretical model to describe a physical identity of the soft X-ray excess, ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit (IS CO) around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic (GRMHD) accretion which has implied that the accreting plasma can develop into a standing shock for suitable physical conditions causing the downstream flow to be sufficiently hot due to shock compression. We numerically calculate to examine, for sets of fiducial plasma parameters, a physical nature of fast MHD shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-parameter Comptonization model of inclination angle $theta_{rm obs}$, disk photon temperature $kT_{rm in}$ and downstream electron energy $kT_e$ to calculate the predicted spectra in comparison with a 60 ks {it XMM-Newton}/EPIC-pn spectrum of a typical radio-quiet Seyfert 1 AGN, Ark~120. Our $chi^2$-analyses demonstrate that the model is plausible in successfully describing data for both non-spinning and spinning BHs with the derived range of $61.3~{rm keV} lesssim kT_e lesssim 144.3~{rm keV}$, $21.6~{rm eV} lesssim kT_{rm in} lesssim 34.0~{rm eV}$ and $17.5degr lesssim theta_{rm obs} lesssim 42.6degr$ indicating a compact Comptonizing region of $3-4$ gravitational radii that resembles the putative X-ray coronae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا