ترغب بنشر مسار تعليمي؟ اضغط هنا

Density diagnostics of ionized outflows in active galactic nuclei: X-ray and UV absorption lines from metastable levels in Be-like to C-like ions

119   0   0.0 ( 0 )
 نشر من قبل Junjie Mao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ionized outflows in Active Galactic Nuclei (AGN) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modelled ionization parameter. With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1 -- 2000 {AA} wavelength range. In the large density range of $n_H in (10^6, 10^{20} m^{-3}$, the metastable levels 2s 2p $(^3P_{0-2})$ in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s$^2$ 2p $(^2P_{3/2})$ can be used as a density probe. For C-like ions, the first two excited levels 2s$^2$ 2p$^2$ ($^3P_1$ and $^3P_2$) are better density probes than the next two excited levels 2s$^2$ 2p$^2$ ($^1S_0$ and $^1D_2$). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameter, but also a wide range of density. On the other hand, within the same isonuclear sequence, less ionized ions probe lower density and smaller ionization parameter. Finally, we re-analyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002, using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components, based on the presence (or absence) of the metastable absorption lines.

قيم البحث

اقرأ أيضاً

We review X-ray plasma diagnostics based on the line ratios of He-like ions. Triplet/singlet line intensities can be used to determine electronic temperature and density, and were first developed for the study of the solar corona. Since the launches of the X-ray satellites Chandra and XMM-Newton, these diagnostics have been extended and used (from CV to Si XIII) for a wide variety of astrophysical plasmas such as stellar coronae, supernova remnants, solar system objects, active galactic nuclei, and X-ray binaries. Moreover, the intensities of He-like ions can be used to determine the ionization process(es) at work, as well as the distance between the X-ray plasma and the UV emission source for example in hot stars. In the near future thanks to the next generation of X-ray satellites (e.g., Astro-H and IXO), higher-Z He-like lines (e.g., iron) will be resolved, allowing plasmas with higher temperatures and densities to be probed. Moreover, the so-called satellite lines that are formed closed to parent He-like lines, will provide additional valuable diagnostics to determine electronic temperature, ionic fraction, departure from ionization equilibrium and/or from Maxwellian electron distribution.
We present He-like line ratios (resonance, intercombination and forbidden lines) for totally and partially photoionized media. For solar plasmas, these line ratios are already widely used for density and temperature diagnostics of coronal (collisiona l) plasmas. In the case of totally and partially photoionized plasmas, He-like line ratios allow for the determination of the ionization processes involved in the plasma (photoionization with or without an additional collisional ionization process), as well as the density and the electronic temperature. With the new generation of X-ray satellites, Chandra/AXAF, XMM and Astro-E, it will be feasible to obtain both high spectral resolution and high sensitivity observations. Thus in the coming years, the ratios of these three components will be measurable for a large number of non-solar objects. In particular, these ratios could be applied to the Warm Absorber-Emitter, commonly present in Active Galactic Nuclei (AGN). A better understanding of the Warm Absorber connection to other regions (Broad Line Region, Narrow Line Region) in AGN (Seyferts type-1 and type-2, low- and high-redshift quasars...) will be an important key to obtaining strong constraints on unified schemes. We have calculated He-like line ratios, for Z=6, 7, 8, 10, 12 and 14, taking into account the upper level radiative cascades which we have computed for radiative and dielectronic recombinations and collisional excitation. The atomic data are tabulated over a wide range of temperatures in order to be used for interpreting a large variety of astrophysical plasmas.
One of the main problems in modeling the ionised outflows in Active Galactic Nuclei is the unknown distance of the outflowing wind to the central source. Only if the density is known this distance can be determined through the ionisation parameter. H ere we study density diagnostics based upon O V transitions. O V is known to have metastable levels that are density dependent. We study the population of those levels under photoionisation equilibrium conditions and determine for which parameter range they can have a significant population. We find that resonance line trapping plays an important role in reducing the critical densities above which the metastable population becomes important. We investigate the K-shell absorption lines from these metastable levels. Provided that there is a sufficient population of the metastable levels, the corresponding K-shell absorption lines are detectable and are well separated from the main absorption line originating from the ground state. We then present the Chandra LETGS spectrum of the Seyfert 1 galaxy Mrk 279 that may show for the first time the presence of these metastable level absorption lines. A firm identification is not yet possible due to both uncertainties in the observed wavelength of the strongest line as well as uncertainties in the predicted wavelength. If the line is indeed due to absorption from O V, then we deduce a distance to the central source of one light week to a few light months, depending upon the importance of additional heating processes.
85 - D. Porquet 2002
The calculations of the ratios of the Helium-like ion X-ray lines from C V to Si XIII are revisited in order to apply the results to density, temperature and ionization process diagnostics of data from high-resolution spectroscopy of the new generati on of X-ray satellites: Chandra and XMM-Newton. Comparing to earlier computations, Porquet & Dubau (2000), the best experimental values are used for radiative transition probabilities. The influence of an external radiation field (photo-excitation), the contribution from unresolved dielectronic satellite lines and the optical depth are taken into account. These diagnostics could be applied to collision-dominated plasmas (e.g., stellar coronae), photo-ionized plasmas (e.g., ``Warm Absorber in AGNs), and transient plasmas (e.g., SNRs).
He-like ions produce distinctive series of triplet lines under various astrophysical conditions. However, this emission can be affected by line absorption from Li-like ions in the same medium. We investigate this absorption of He-like triplets and pr esent the implications for diagnostics of plasmas in photoionisation equilibrium using the line ratios of the triplets. Our computations were carried out for the O VI and Fe XXIV absorption of the O VII and Fe XXV triplet emission lines, respectively. The fluorescent emission by the Li-like ions and continuum absorption of the He-like ion triplet lines are also investigated. We determine the absorption of the triplet lines as a function of Li-like ion column density and velocity dispersion of the emitting and absorbing medium. We find O VI line absorption can significantly alter the O VII triplet line ratios in optically-thin plasmas, by primarily absorbing the intercombination lines, and to a lesser extent, the forbidden line. Because of intrinsic line absorption by O VI inside a photoionised plasma, the predicted ratio of forbidden to intercombination line intensity for the O VII triplet increases from 4 up to an upper limit of 16. This process can explain the triplet line ratios that are higher than expected and that are seen in some X-ray observations of photoionised plasmas. For the Fe XXV triplet, line absorption by Fe XXIV becomes less apparent owing to significant fluorescent emission by Fe XXIV. Without taking the associated Li-like ion line absorption into account, the density diagnosis of photoionised plasmas using the observed line ratios of the He-like ion triplet emission lines can be unreliable, especially for low-Z ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا