ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementing Feedback in Simulations of Galaxy Formation: A Survey of Methods

57   0   0.0 ( 0 )
 نشر من قبل Rob Thacker
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed investigation of different approaches to modeling feedback in simulations of galaxy formation. Gas-dynamic forces are evaluated using Smoothed Particle Hydrodynamics (SPH) while star formation and supernova feedback are included using a three parameter model which determines the star formation rate normalization, feedback energy and lifetime of feedback regions. The star formation rate is calculated using a Lagrangian Schmidt Law for all gas particles which satisfy temperature, density and convergent flow criteria. Feedback is incorporated as thermal heating of the ISM. We compare the effects of distributing this energy over the smoothing scale or depositing it on a single particle. Radiative losses are prevented from heated particles by adjusting the density used in radiative cooling. We test the models on the formation of galaxies from cosmological initial conditions and also on isolated Milky Way and dwarf galaxies. Extremely violent feedback is necessary to produce a gas disk with angular momentum remotely close to that of observed disk galaxies. This is a result of the extreme central concentration of the dark halos in the sCDM model, and the pervasiveness of the core-halo angular momentum transport mechanism. We emphasize that the disks formed in hierarchical simulations are partially a numerical artifact produced by the minimum mass scale of the simulation acting as a highly efficient `support mechanism. Disk formation is strongly affected by the treatment of dense regions in SPH, which along with the difficulty of representing the hierarchical formation process, means that realistic simulations of galaxy formation require far higher resolution than currently used.

قيم البحث

اقرأ أيضاً

177 - Martin Jubelgas 2006
It is well known that cosmic rays (CRs) contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting that they may play an important role in regulating star formation during the formation and evolution of galaxies . We here discuss a novel numerical treatment of the physics of CRs and its implementation in the parallel smoothed particle hydrodynamics code GADGET-2. In our methodology, the non-thermal CR population of each gaseous fluid element is approximated by a simple power law spectrum in particle momentum, characterized by an amplitude, a cut-off, and a fixed slope. Adiabatic compression, and a number of physical source and sink terms are modelled which modify the CR pressure of each particle. The most important sources considered are injection by supernovae and diffusive shock acceleration, while the primary sinks are thermalization by Coulomb interactions, and catastrophic losses by hadronic interactions. We also include diffusion of CRs. Our scheme allows us to carry out the first cosmological structure formation simulations that self-consistently account for CR physics. In simulations of isolated galaxies, we find that CRs can significantly reduce the star formation efficiencies of small galaxies, with virial velocities below ~80 km/s, an effect that becomes progressively stronger towards low mass scales. In cosmological simulations at high redshift, the total mass-to-light ratio of small halos and the faint-end of the luminosity function are strongly affected. When CR acceleration in shocks is followed as well, up to ~40% of the energy dissipated at structure formation shocks can appear as CR pressure at z~3-6, but this fraction drops to ~10% at low redshifts when the shock distribution becomes increasingly dominated by lower Mach numbers. (abridged)
Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resol ution dependent scalings. We present a sub-resolution model representing the three major phases of supernova blast wave evolution $-$free expansion, energy conserving Sedov-Taylor, and momentum conserving snowplow$-$ with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, $f_{mathrm{hot}}$, as $(1 - f_{mathrm{hot}})^{-4/5}$. We also include winds from young massive stars and AGB stars, Stromgren sphere gas heating by massive stars, and a gas cooling limiting mechanism driven by radiative recombination of dense HII regions. We present initial tests for isolated Milky-Way like systems simulated with the GADGET based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a two order of magnitude variation in particle mass in the range (1.3$-$130)$times 10^4$ solar masses.
We compare the results of thirteen cosmological gasdynamical codes used to simulate the formation of a galaxy in the LCDM structure formation paradigm. The various runs differ in their hydrodynamical treatment (SPH, moving-mesh and AMR) but share the same initial conditions and adopt their latest published model of cooling, star formation and feedback. Despite the common halo assembly history, we find large code-to-code variations in the stellar mass, size, morphology and gas content of the galaxy at z=0, due mainly to the different implementations of feedback. Compared with observation, most codes tend to produce an overly massive galaxy, smaller and less gas-rich than typical spirals, with a massive bulge and a declining rotation curve. A stellar disk is discernible in most simulations, though its prominence varies widely from code to code. There is a well-defined trend between the effects of feedback and the severity of the disagreement with observation. Models that are more effective at limiting the baryonic mass of the galaxy come closer to matching observed galaxy scaling laws, but often to the detriment of the disk component. Our conclusions hold at two different numerical resolutions. Some differences can also be traced to the numerical techniques: more gas seems able to cool and become available for star formation in grid-based codes than in SPH. However, this effect is small compared to the variations induced by different feedback prescriptions. We conclude that state-of-the-art simulations cannot yet uniquely predict the properties of the baryonic component of a galaxy, even when the assembly history of its host halo is fully specified. Developing feedback algorithms that can effectively regulate the mass of a galaxy without hindering the formation of high-angular momentum stellar disks remains a challenge.
It is well known that cosmic rays (CRs) contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting that they may play an important role in regulating star formation during the formation and evolution of galaxies . We will present a novel numerical treatment of the physics of CRs and its implementation in the parallel smoothed particle hydrodynamics (SPH) code GADGET-2. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. In simulations of galaxy formation, we find that CRs can significantly reduce the star formation efficiencies of small galaxies. This effect becomes progressively stronger towards low mass scales. In cosmological simulations of the formation of dwarf galaxies at high redshift, we find that the total mass-to-light ratio of small halos and the faint-end of the luminosity function are affected. In high resolution simulations of galaxy clusters, we find lower contributions of CR pressure, due to the smaller CR injection efficiencies at low Mach number flow shocks inside halos, and the softer adiabatic index of CRs, which disfavours them when a composite of thermal gas and CRs is adiabatically compressed. Within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading to an enhanced compressibility of the central intra-cluster medium, an effect that increases the central density and pressure of the gas. While the X-ray luminosity in low mass cool core clusters is boosted, the integrated Sunyaev-Zeldovich effect is only slightly changed. The resolved Sunyaev-Zeldovich maps, however, show a larger variation with an increased central flux decrement.
Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) proje ct. We study ultra-faint dwarf through Milky Way mass scales, including H+He photo-ionization; photo-electric, Lyman Werner, Compton, and dust heating; and single+multiple scattering radiation pressure (RP). We compare distinct numerical algorithms: ray-based LEBRON (exact when optically-thin) and moments-based M1 (exact when optically-thick). The most important RFB channels on galaxy scales are photo-ionization heating and single-scattering RP: in all galaxies, most ionizing/far-UV luminosity (~1/2 of lifetime-integrated bolometric) is absorbed. In dwarfs, the most important effect is photo-ionization heating from the UV background suppressing accretion. In MW-mass galaxies, meta-galactic backgrounds have negligible effects; but local photo-ionization and single-scattering RP contribute to regulating the galactic star formation efficiency and lowering central densities. Without some RFB (or other rapid FB), resolved GMCs convert too-efficiently into stars, making galaxies dominated by hyper-dense, bound star clusters. This makes star formation more violent and bursty when SNe explode in these hyper-clustered objects: thus, including RFB smoothes SFHs. These conclusions are robust to RHD methods, but M1 produces somewhat stronger effects. Like in previous FIRE simulations, IR multiple-scattering is rare (negligible in dwarfs, ~10% of RP in massive galaxies): absorption occurs primarily in normal GMCs with A_v~1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا