ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitonic and lattice contributions to the charge density wave in 1T-TiSe$_2$ revealed by a phonon bottleneck

121   0   0.0 ( 0 )
 نشر من قبل Enrico Da Como
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding collective electronic states such as superconductivity and charge density waves is pivotal for fundamental science and applications. The layered transition metal dichalcogenide 1T-TiSe2 hosts a unique charge density wave (CDW) phase transition whose origins are still not fully understood. Here, we present ultrafast time- and angle-resolved photoemission spectroscopy (TR-ARPES) measurements complemented by time-resolved reflectivity (TRR) which allows us to establish the contribution of excitonic and electron-phonon interactions to the CDW. We monitor the energy shift of the valence band (VB) and coupling to coherent phonons as a function of laser fluence. The VB shift, directly related to the CDW gap closure, exhibits a markedly slower recovery dynamics at fluences above Fth = 60 microJ cm-2. This observation coincides with a shift in the relative weight of coherently coupled phonons to higher frequency modes in time-resolved reflectivity (TRR), suggesting a phonon bottleneck. Using a rate equation model, the emergence of a high-fluence bottleneck is attributed to an abrupt reduction in coupled phonon damping and an increase in exciton dissociation rate linked to the loss of CDW superlattice phonons. Thus, our work establishes the important role of both excitonic and phononic interactions in the CDW phase transition and the advantage of combining complementary femtosecond techniques to understand the complex interactions in quantum materials.



قيم البحث

اقرأ أيضاً

Substrate engineering provides an opportunity to modulate the physical properties of quantum materials in thin film form. Here we report that TiSe$_2$ thin films grown on TiO$_2$ have unexpectedly large electron doping that suppresses the charge dens ity wave (CDW) order. This is dramatically different from either bulk single crystal TiSe$_2$ or TiSe$_2$ thin films on graphene. The epitaxial TiSe$_2$ thin films can be prepared on TiO$_2$ via molecular beam epitaxy (MBE) in two ways: by conventional co-deposition using selenium and titanium sources, and by evaporating only selenium on reconstructed TiO$_2$ surfaces. Both growth methods yield atomically flat thin films with similar physical properties. The electron doping and subsequent suppression of CDW order can be explained by selenium vacancies in the TiSe$_2$ film, which naturally occur when TiO$_2$ substrates are used. This is due to the stronger interfacial bonding that changes the ideal growth conditions. Our finding provides a way to tune the chemical potential of chalcogenide thin films via substrate selection and engineering.
Metal-to-insulator transitions (MIT) can be driven by a number of different mechanisms, each resulting in a different type of insulator -- Change in chemical potential can induce a transition from a metal to a band insulator; strong correlations can drive a metal into a Mott insulator with an energy gap; an Anderson transition, on the other hand, due to disorder leads to a localized insulator without a gap in the spectrum. Here we report the discovery of an alternative route for MIT driven by the creation of a network of narrow channels. Transport data on Pt substituted for Ti in TiSe$_2$ shows a dramatic increase of resistivity by five orders of magnitude for few % of Pt substitution, with a power-law dependence of the temperature-dependent resistivity $rho(T)$. Our scanning tunneling microscopy data show that Pt induces an irregular network of nanometer-thick domain walls (DWs) of charge density wave (CDW) order, which pull charge carriers out of the bulk and into the DWs. While the CDW domains are gapped, the charges confined to the narrow DWs interact strongly, with pseudogap-like suppression in the local density of states, even when they were weakly interacting in the bulk, and scatter at the DW network interconnects thereby generating the highly resistive state. Angle-resolved photoemission spectroscopy spectra exhibit pseudogap behavior corroborating the spatial coexistence of gapped domains and narrow domain walls with excess charge carriers.
(TaSe4)2I, a quasi-one-dimensional (1D) crystal, shows a characteristic temperature-driven metal-insulator phase transition. Above the charge density wave (CDW) temperature Tc, (TaSe4)2I has been predicted to harbor a Weyl semimetal phase. Below Tc, it becomes an axion insulator. Here, we performed angle-resolved photoemission spectroscopy (ARPES) measurements on the (110) surface of (TaSe4)2I and observed two sets of Dirac-like energy bands in the first Brillion zone, which agree well with our first-principles calculations. Moreover, we found that each Dirac band exhibits an energy splitting of hundreds of meV under certain circumstances. In combination with core level measurements, our theoretical analysis showed that this Dirac band splitting is a result of surface charge polarization due to the loss of surface iodine atoms. Our findings here shed new light on the interplay between band topology and CDW order in Peierls compounds and will motivate more studies on topological properties of strongly correlated quasi-1D materials.
We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe$_2$ using a realistic multiorbital $d$-$p$ model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti $3d$ and Se $4p$ orbitals in the monolayer TiSe$_2$ on the basis of the first-principles band structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-$q$ CDW state is thus examined to show that the transverse phonon modes at the M$_1$, M$_2$, and M$_3$ points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se $4p$ and conduction Ti $3d$ bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-$q$ CDW state in TiSe$_2$. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe$_2$ is of a bond-type and induces a vortex-like antiferroelectric polarization in the kagome network of Ti atoms.
We study phenomena driven by electron-electron interactions in the minimally twisted bilayer graphene (mTBLG) with a perpendicular electric field. The low-energy degrees of freedom in mTBLG are governed by a network of one-dimensional domain-wall sta tes, described by two channels of one-dimensional linearly dispersing spin-1/2 fermions. We show that the interaction can realize a spin-gapped inter-channel charge density wave (CDW) state at low temperatures, forming a Coulomb drag between the channels and leaving only one charge conducting mode. For sufficiently high temperatures, power-law-in-temperature resistivity emerges from the charge umklapp scatterings within a domain wall. Remarkably, the presence of the CDW states can strengthen the charge umklapp scattering and induce a resistivity minimum at an intermediate temperature corresponding to the CDW correlation energy. We further discuss the conditions that resistivity of the network is dominated by the domain walls. In particular, the power-law-in-temperature resistivity results can apply to other systems that manifest topological domain-wall structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا