ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Superconducting Transitions in Single Crystal La$_{2-x}$Ba$_x$CuO$_4$

105   0   0.0 ( 0 )
 نشر من قبل Xian Yang Tee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use spatially-resolved transport techniques to investigate the superconducting properties of single crystals La$_{2-x}$Ba$_x$CuO$_4$. We find a new superconducting transition temperature $T_{cs}$ associated with the ab-plane surface region which is considerably higher than the bulk $T_c$. The effect is pronounced in the region of charge carrier doping $x$ with strong spin-charge stripe correlations, reaching $T_{cs}=36$ K or 1.64$T_c$.

قيم البحث

اقرأ أيضاً

210 - D. Fu , D. Nicoletti , M. Fechner 2021
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonli near at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
The high critical temperature superconductor Lanthanum Barium Copper Oxide (La2-xBaxCuO4 or LBCO) exhibits a strong anomaly in critical temperature at 1/8th doping, nematicity, and other interesting properties. We report here Scanning Superconducting Quantum Interference Device (SQUID) imaging of the magnetic fields and susceptibility in a number of thin film LBCO samples with doping in the vicinity of the 1/8th anomaly. Spatially resolved measurements of the critical temperatures of these samples do not show a pronounced depression at 1/8th doping. They do, however, exhibit strong, nearly linear modulations of the susceptibility (straie) of multiple samples with surprisingly long periods of 1-4 microns. Counterintuitively, vortices trap in positions of largest diamagnetic susceptibility in these striae. Given the rich interplay of different orders in this material system and its known sensitivity to epitaxial strain, we propose phase separation as a possible origin of these features and discuss scenarios in which that might arise.
We have studied structural phase transitions in high quality underdoped La$_{2-x}$Ba$_x$CuO$_4$ single crystals using high resolution x-ray scattering techniques. Critical properties associated with the continuous High Temperature Tetragonal (HTT, $I 4/mmm$) to Middle Temperature Orthorhombic (MTO, $Cmca$) phase transition were investigated in single crystal samples with x=0.125, 0.095, and 0.08 and we find that all behavior is consistent with three dimensional XY criticality, as expected from theory. Power law behavior in the orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide temperature range, spanning most of the MTO regime in the phase diagram. Low temperature measurements investigating the Low Temperature Tetragonal (LTT, $P4_{2}/ncm$) phase, below the strongly discontinuous MTO$to$LTT phase transition, in x=0.125 and x=0.095 samples show that the LTT phase is characterized by relatively broad Bragg scattering, compared with that observed at related wavevectors in the HTT phase. This shows that the LTT phase is either an admixture of tetragonal and orthorhombic phases, or that it is orthorhombic with very small orthorhombic strain, consistent with the ``less orthorhombic low temperature structure previously reported in mixed La$_{2-x}$Sr$_{x-y}$Ba$_y$CuO$_4$ single crystals. We compare the complex temperature-composition phase diagram for the location of structural and superconducting phase transitions in underdoped La$_{2-x}$Ba$_x$CuO$_4$ and find good agreement with results obtained on polycrystalline samples.
Recent experiments in the original cuprate high temperature superconductor, La$_2-x$Ba$_x$CuO$_4$, have revealed a remarkable sequence of transitions [1]. Here we investigate such crystals with Kerr effect which is sensitive to time-reversal-symmetry breaking (TRSB). Concurrent birefringence measurements accurately locate the structural phase transitions from high-temperature tetragonal to low temperature orthorhombic, and then to lower temperature tetragonal, at which temperature a strong Kerr signal onsets. Hysteretic behavior of the Kerr signal suggests that TRSB occurs well above room temperature, an effect that was previously observed in high quality YBa$_2$Cu$_3$O$_{6+x} crystals [2].
Temperature dependence of the in-plane electrical resistivity, $rho_{rm ab}$, in various magnetic fields has been measured in the single-crystal La$_{2-x}$Ba$_x$CuO$_4$ with $x=0.08$, 0.10, 0.11 and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ with $x=0.12$. It has been found that the superconducting transition curve shows a so-called fan-shape broadening in magnetic fields for $x=0.08$, while it shifts toward the low-temperature side in parallel with increasing field for $x=0.11$ and 0.12 where the charge-spin stripe order is formed at low temperatures. As for $x=0.10$, the broadening is observed in low fields and it changes to the parallel shift in high fields above 9 T. Moreover, the normal-state value of $rho_{rm ab}$ at low temperatures markedly increases with increasing field up to 15 T. It is possible that these pronounced features of $x=0.10$ are understood in terms of the magnetic-field-induced stabilization of the stripe order suggested from the neutron-scattering measurements in the La-214 system. The $rho_{rm ab}$ in the normal state at low temperatures has been found to be proportional to ln(1/$T$) for $x=0.10$, 0.11 and 0.12. The ln(1/$T$) dependence of $rho_{rm ab}$ is robust even in the stripe-ordered state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا