ترغب بنشر مسار تعليمي؟ اضغط هنا

Frame by frame completion probability of an NFL pass

203   0   0.0 ( 0 )
 نشر من قبل Gustavo Silva
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

American football is an increasingly popular sport, with a growing audience in many countries in the world. The most watched American football league in the world is the United States National Football League (NFL), where every offensive play can be either a run or a pass, and in this work we focus on passes. Many factors can affect the probability of pass completion, such as receiver separation from the nearest defender, distance from receiver to passer, offense formation, among many others. When predicting the completion probability of a pass, it is essential to know who the target of the pass is. By using distance measures between players and the ball, it is possible to calculate empirical probabilities and predict very accurately who the target will be. The big question is: how likely is it for a pass to be completed in an NFL match while the ball is in the air? We developed a machine learning algorithm to answer this based on several predictors. Using data from the 2018 NFL season, we obtained conditional and marginal predictions for pass completion probability based on a random forest model. This is based on a two-stage procedure: first, we calculate the probability of each offensive player being the pass target, then, conditional on the target, we predict completion probability based on the random forest model. Finally, the general completion probability can be calculated using the law of total probability. We present animations for selected plays and show the pass completion probability evolution.

قيم البحث

اقرأ أيضاً

In this paper, we propose a simple algorithm to cluster nonnegative data lying in disjoint subspaces. We analyze its performance in relation to a certain measure of correlation between said subspaces. We use our clustering algorithm to develop a matr ix completion algorithm which can outperform standard matrix completion algorithms on data matrices satisfying certain natural conditions.
Video anomaly detection is commonly used in many applications such as security surveillance and is very challenging.A majority of recent video anomaly detection approaches utilize deep reconstruction models, but their performance is often suboptimal because of insufficient reconstruction error differences between normal and abnormal video frames in practice. Meanwhile, frame prediction-based anomaly detection methods have shown promising performance. In this paper, we propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design which is more in line with the characteristics of surveillance videos. The proposed method is equipped with a multi-path ConvGRU-based frame prediction network that can better handle semantically informative objects and areas of different scales and capture spatial-temporal dependencies in normal videos. A noise tolerance loss is introduced during training to mitigate the interference caused by background noise. Extensive experiments have been conducted on the CUHK Avenue, ShanghaiTech Campus, and UCSD Pedestrian datasets, and the results show that our proposed method outperforms existing state-of-the-art approaches. Remarkably, our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
With its high sensitivity, the Pyramid wavefront sensor (PyWFS) is becoming an advantageous sensor for astronomical adaptive optics (AO) systems. However, this sensor exhibits significant non-linear behaviours leading to challenging AO control issues . In order to mitigate these effects, we propose to use, in addition to the classical pyramid sensor, a focal plane image combined with a convolutive description of the sensor to perform a fast tracking of the PyWFS non-linearities, the so-called optical gains (OG). We show that this additional focal plane imaging path only requires a small fraction of the total flux, while representing a robust solution to estimate the PyWFS OG. Finally, we demonstrate the gain brought by our method with the specific examples of bootstrap and Non-Common Path Aberrations (NCPA) handling.
Matrix completion aims to reconstruct a data matrix based on observations of a small number of its entries. Usually in matrix completion a single matrix is considered, which can be, for example, a rating matrix in recommendation system. However, in p ractical situations, data is often obtained from multiple sources which results in a collection of matrices rather than a single one. In this work, we consider the problem of collective matrix completion with multiple and heterogeneous matrices, which can be count, binary, continuous, etc. We first investigate the setting where, for each source, the matrix entries are sampled from an exponential family distribution. Then, we relax the assumption of exponential family distribution for the noise and we investigate the distribution-free case. In this setting, we do not assume any specific model for the observations. The estimation procedures are based on minimizing the sum of a goodness-of-fit term and the nuclear norm penalization of the whole collective matrix. We prove that the proposed estimators achieve fast rates of convergence under the two considered settings and we corroborate our results with numerical experiments.
In this work, we address the problem of precisely localizing key frames of an action, for example, the precise time that a pitcher releases a baseball, or the precise time that a crowd begins to applaud. Key frame localization is a largely overlooked and important action-recognition problem, for example in the field of neuroscience, in which we would like to understand the neural activity that produces the start of a bout of an action. To address this problem, we introduce a novel structured loss function that properly weights the types of errors that matter in such applications: it more heavily penalizes extra and missed action start detections over small misalignments. Our structured loss is based on the best matching between predicted and labeled action starts. We train recurrent neural networks (RNNs) to minimize differentiable approximations of this loss. To evaluate these methods, we introduce the Mouse Reach Dataset, a large, annotated video dataset of mice performing a sequence of actions. The dataset was collected and labeled by experts for the purpose of neuroscience research. On this dataset, we demonstrate that our method outperforms related approaches and baseline methods using an unstructured loss.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا