ترغب بنشر مسار تعليمي؟ اضغط هنا

SAFRAN: An interpretable, rule-based link prediction method outperforming embedding models

140   0   0.0 ( 0 )
 نشر من قبل Simon Ott
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural embedding-based machine learning models have shown promise for predicting novel links in knowledge graphs. Unfortunately, their practical utility is diminished by their lack of interpretability. Recently, the fully interpretable, rule-based algorithm AnyBURL yielded highly competitive results on many general-purpose link prediction benchmarks. However, current approaches for aggregating predictions made by multiple rules are affected by redundancies. We improve upon AnyBURL by introducing the SAFRAN rule application framework, which uses a novel aggregation approach called Non-redundant Noisy-OR that detects and clusters redundant rules prior to aggregation. SAFRAN yields new state-of-the-art results for fully interpretable link prediction on the established general-purpose benchmarks FB15K-237, WN18RR and YAGO3-10. Furthermore, it exceeds the results of multiple established embedding-based algorithms on FB15K-237 and WN18RR and narrows the gap between rule-based and embedding-based algorithms on YAGO3-10.



قيم البحث

اقرأ أيضاً

Neural embedding-based machine learning models have shown promise for predicting novel links in biomedical knowledge graphs. Unfortunately, their practical utility is diminished by their lack of interpretability. Recently, the fully interpretable, ru le-based algorithm AnyBURL yielded highly competitive results on many general-purpose link prediction benchmarks. However, its applicability to large-scale prediction tasks on complex biomedical knowledge bases is limited by long inference times and difficulties with aggregating predictions made by multiple rules. We improve upon AnyBURL by introducing the SAFRAN rule application framework which aggregates rules through a scalable clustering algorithm. SAFRAN yields new state-of-the-art results for fully interpretable link prediction on the established general-purpose benchmark FB15K-237 and the large-scale biomedical benchmark OpenBioLink. Furthermore, it exceeds the results of multiple established embedding-based algorithms on FB15K-237 and narrows the gap between rule-based and embedding-based algorithms on OpenBioLink. We also show that SAFRAN increases inference speeds by up to two orders of magnitude.
The use of sophisticated machine learning models for critical decision making is faced with a challenge that these models are often applied as a black-box. This has led to an increased interest in interpretable machine learning, where post hoc interp retation presents a useful mechanism for generating interpretations of complex learning models. In this paper, we propose a novel approach underpinned by an extended framework of Bayesian networks for generating post hoc interpretations of a black-box predictive model. The framework supports extracting a Bayesian network as an approximation of the black-box model for a specific prediction. Compared to the existing post hoc interpretation methods, the contribution of our approach is three-fold. Firstly, the extracted Bayesian network, as a probabilistic graphical model, can provide interpretations about not only what input features but also why these features contributed to a prediction. Secondly, for complex decision problems with many features, a Markov blanket can be generated from the extracted Bayesian network to provide interpretations with a focused view on those input features that directly contributed to a prediction. Thirdly, the extracted Bayesian network enables the identification of four different rules which can inform the decision-maker about the confidence level in a prediction, thus helping the decision-maker assess the reliability of predictions learned by a black-box model. We implemented the proposed approach, applied it in the context of two well-known public datasets and analysed the results, which are made available in an open-source repository.
In todays networked society, many real-world problems can be formalized as predicting links in networks, such as Facebook friendship suggestions, e-commerce recommendations, and the prediction of scientific collaborations in citation networks. Increa singly often, link prediction problem is tackled by means of network embedding methods, owing to their state-of-the-art performance. However, these methods lack transparency when compared to simpler baselines, and as a result their robustness against adversarial attacks is a possible point of concern: could one or a few small adversarial modifications to the network have a large impact on the link prediction performance when using a network embedding model? Prior research has already investigated adversarial robustness for network embedding models, focused on classification at the node and graph level. Robustness with respect to the link prediction downstream task, on the other hand, has been explored much less. This paper contributes to filling this gap, by studying adversarial robustness of Conditional Network Embedding (CNE), a state-of-the-art probabilistic network embedding model, for link prediction. More specifically, given CNE and a network, we measure the sensitivity of the link predictions of the model to small adversarial perturbations of the network, namely changes of the link status of a node pair. Thus, our approach allows one to identify the links and non-links in the network that are most vulnerable to such perturbations, for further investigation by an analyst. We analyze the characteristics of the most and least sensitive perturbations, and empirically confirm that our approach not only succeeds in identifying the most vulnerable links and non-links, but also that it does so in a time-efficient manner thanks to an effective approximation.
Populating ontology graphs represents a long-standing problem for the Semantic Web community. Recent advances in translation-based graph embedding methods for populating instance-level knowledge graphs lead to promising new approaching for the ontolo gy population problem. However, unlike instance-level graphs, the majority of relation facts in ontology graphs come with comprehensive semantic relations, which often include the properties of transitivity and symmetry, as well as hierarchical relations. These comprehensive relations are often too complex for existing graph embedding methods, and direct application of such methods is not feasible. Hence, we propose On2Vec, a novel translation-based graph embedding method for ontology population. On2Vec integrates two model components that effectively characterize comprehensive relation facts in ontology graphs. The first is the Component-specific Model that encodes concepts and relations into low-dimensional embedding spaces without a loss of relational properties; the second is the Hierarchy Model that performs focused learning of hierarchical relation facts. Experiments on several well-known ontology graphs demonstrate the promising capabilities of On2Vec in predicting and verifying new relation facts. These promising results also make possible significant improvements in related methods.
Network embedding methods map a networks nodes to vectors in an embedding space, in such a way that these representations are useful for estimating some notion of similarity or proximity between pairs of nodes in the network. The quality of these nod e representations is then showcased through results of downstream prediction tasks. Commonly used benchmark tasks such as link prediction, however, present complex evaluation pipelines and an abundance of design choices. This, together with a lack of standardized evaluation setups can obscure the real progress in the field. In this paper, we aim to shed light on the state-of-the-art of network embedding methods for link prediction and show, using a consistent evaluation pipeline, that only thin progress has been made over the last years. The newly conducted benchmark that we present here, including 17 embedding methods, also shows that many approaches are outperformed even by simple heuristics. Finally, we argue that standardized evaluation tools can repair this situation and boost future progress in this field.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا