ترغب بنشر مسار تعليمي؟ اضغط هنا

ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and Tactile Representations

340   0   0.0 ( 0 )
 نشر من قبل Ruohan Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multisensory object-centric perception, reasoning, and interaction have been a key research topic in recent years. However, the progress in these directions is limited by the small set of objects available -- synthetic objects are not realistic enough and are mostly centered around geometry, while real object datasets such as YCB are often practically challenging and unstable to acquire due to international shipping, inventory, and financial cost. We present ObjectFolder, a dataset of 100 virtualized objects that addresses both challenges with two key innovations. First, ObjectFolder encodes the visual, auditory, and tactile sensory data for all objects, enabling a number of multisensory object recognition tasks, beyond existing datasets that focus purely on object geometry. Second, ObjectFolder employs a uniform, object-centric, and implicit representation for each objects visual textures, acoustic simulations, and tactile readings, making the dataset flexible to use and easy to share. We demonstrate the usefulness of our dataset as a testbed for multisensory perception and control by evaluating it on a variety of benchmark tasks, including instance recognition, cross-sensory retrieval, 3D reconstruction, and robotic grasping.



قيم البحث

اقرأ أيضاً

Tactile sensing plays an important role in robotic perception and manipulation tasks. To overcome the real-world limitations of data collection, simulating tactile response in a virtual environment comes as a desirable direction of robotic research. In this paper, we propose Elastic Interaction of Particles (EIP) for tactile simulation. Most existing works model the tactile sensor as a rigid multi-body, which is incapable of reflecting the elastic property of the tactile sensor as well as characterizing the fine-grained physical interaction between the two objects. By contrast, EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact. With the tactile simulation by EIP, we further propose a tactile-visual perception network that enables information fusion between tactile data and visual images. The perception network is based on a global-to-local fusion mechanism where multi-scale tactile features are aggregated to the corresponding local region of the visual modality with the guidance of tactile positions and directions. The fusion method exhibits superiority regarding the 3D geometric reconstruction task.
Slip detection plays a vital role in robotic manipulation and it has long been a challenging problem in the robotic community. In this paper, we propose a new method based on deep neural network (DNN) to detect slip. The training data is acquired by a GelSight tactile sensor and a camera mounted on a gripper when we use a robot arm to grasp and lift 94 daily objects with different grasping forces and grasping positions. The DNN is trained to classify whether a slip occurred or not. To evaluate the performance of the DNN, we test 10 unseen objects in 152 grasps. A detection accuracy as high as 88.03% is achieved. It is anticipated that the accuracy can be further improved with a larger dataset. This method is beneficial for robots to make stable grasps, which can be widely applied to automatic force control, grasping strategy selection and fine manipulation.
We present a generalized grasping algorithm that uses point clouds (i.e. a group of points and their respective surface normals) to discover grasp pose solutions for multiple grasp types, executed by a mechanical gripper, in near real-time. The algor ithm introduces two ideas: 1) a histogram of finger contact normals is used to represent a grasp shape to guide a gripper orientation search in a histogram of object(s) surface normals, and 2) voxel grid representations of gripper and object(s) are cross-correlated to match finger contact points, i.e. grasp size, to discover a grasp pose. Constraints, such as collisions with neighbouring objects, are optionally incorporated in the cross-correlation computation. We show via simulations and experiments that 1) grasp poses for three grasp types can be found in near real-time, 2) grasp pose solutions are consistent with respect to voxel resolution changes for both partial and complete point cloud scans, and 3) a planned grasp is executed with a mechanical gripper.
177 - Yuhao Guo , Xin Jiang , Yunhui Liu 2021
In this paper, we presented a new method for deformation control of deformable objects, which utilizes both visual and tactile feedback. At present, manipulation of deformable objects is basically formulated by assuming positional constraints. But in fact, in many situations manipulation has to be performed under actively applied force constraints. This scenario is considered in this research. In the proposed scheme a tactile feedback is integrated to ensure a stable contact between the robot end-effector and the soft object to be manipulated. The controlled contact force is also utilized to regulate the deformation of the soft object with its shape measured by a vision sensor. The effectiveness of the proposed method is demonstrated by a book page turning and shaping experiment.
We propose a new simple approach for image compression: instead of storing the RGB values for each pixel of an image, we store the weights of a neural network overfitted to the image. Specifically, to encode an image, we fit it with an MLP which maps pixel locations to RGB values. We then quantize and store the weights of this MLP as a code for the image. To decode the image, we simply evaluate the MLP at every pixel location. We found that this simple approach outperforms JPEG at low bit-rates, even without entropy coding or learning a distribution over weights. While our framework is not yet competitive with state of the art compression methods, we show that it has various attractive properties which could make it a viable alternative to other neural data compression approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا