ﻻ يوجد ملخص باللغة العربية
We study mean convergence of multiple ergodic averages, where the iterates arise from smooth functions of polynomial growth that belong to a Hardy field. Our results include all logarithmico-exponential functions of polynomial growth, such as the functions $t^{3/2}, tlog t$ and $e^{sqrt{log t}}$. We show that if all non-trivial linear combinations of the functions $a_1,...,a_k$ stay logarithmically away from rational polynomials, then the $L^2$-limit of the ergodic averages $frac{1}{N} sum_{n=1}^{N}f_1(T^{lfloor{a_1(n)}rfloor}x)cdots f_k(T^{lfloor{a_k(n)}rfloor}x)$ exists and is equal to the product of the integrals of the functions $f_1,...,f_k$ in ergodic systems, which establishes a conjecture of Frantzikinakis. Under some more general conditions on the functions $a_1,...,a_k$, we also find characteristic factors for convergence of the above averages and deduce a convergence result for weak-mixing systems.
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure preserving $mathbb{Z}^d$-actions with multivariable integer polynomial iterates is the sum of a nilsequence and a null sequence, ext
Exploiting the recent work of Tao and Ziegler on the concatenation theorem on factors, we find explicit characteristic factors for multiple averages along polynomials on systems with commuting transformations, and use them to study the criteria of jo
We study equidistribution properties of translations on nilmanifolds along functions of polynomial growth from a Hardy field. More precisely, if $X=G/Gamma$ is a nilmanifold, $a_1,ldots,a_kin G$ are commuting nilrotations, and $f_1,ldots,f_k$ are fun
We define interacting particle systems on configurations of the integer lattice (with values in some finite alphabet) by the superimposition of two dynamics: a substitution process with finite range rates, and a circular permutation mechanism(called
An textit{algebraic} action of a discrete group $Gamma $ is a homomorphism from $Gamma $ to the group of continuous automorphisms of a compact abelian group $X$. By duality, such an action of $Gamma $ is determined by a module $M=widehat{X}$ over the