ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodicity of principal algebraic group actions

269   0   0.0 ( 0 )
 نشر من قبل Klaus Schmidt
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An textit{algebraic} action of a discrete group $Gamma $ is a homomorphism from $Gamma $ to the group of continuous automorphisms of a compact abelian group $X$. By duality, such an action of $Gamma $ is determined by a module $M=widehat{X}$ over the integer group ring $mathbb{Z}Gamma $ of $Gamma $. The simplest examples of such modules are of the form $M=mathbb{Z}Gamma /mathbb{Z}Gamma f$ with $fin mathbb{Z}Gamma $; the corresponding algebraic action is the textit{principal algebraic $Gamma $-action} $alpha _f$ defined by $f$. In this note we prove the following extensions of results by Hayes cite{Hayes} on ergodicity of principal algebraic actions: If $Gamma $ is a countably infinite discrete group which is not virtually cyclic, and if $finmathbb{Z}Gamma $ satisfies that right multiplication by $f$ on $ell ^2(Gamma ,mathbb{R})$ is injective, then the principal $Gamma $-action $alpha _f$ is ergodic (Theorem ref{t:ergodic2}). If $Gamma $ contains a finitely generated subgroup with a single end (e.g. a finitely generated amenable subgroup which is not virtually cyclic), or an infinite nonamenable subgroup with vanishing first $ell ^2$-Betti number (e.g., an infinite property $T$ subgroup), the injectivity condition on $f$ can be replaced by the weaker hypothesis that $f$ is not a right zero-divisor in $mathbb{Z}Gamma $ (Theorem ref{t:ergodic1}). Finally, if $Gamma $ is torsion-free, not virtually cyclic, and satisfies Linnells textit{analytic zero-divisor conjecture}, then $alpha _f$ is ergodic for every $fin mathbb{Z}Gamma $ (Remark ref{r:analytic zero divisor}).



قيم البحث

اقرأ أيضاً

135 - Hanfeng Li , Kairan Liu 2021
We show that the principal algebraic actions of countably infinite groups associated to lopsided elements in the integral group ring satisfying some orderability condition are Bernoulli.
We determine the Krieger type of nonsingular Bernoulli actions $G curvearrowright prod_{g in G} ({0,1},mu_g)$. When $G$ is abelian, we do this for arbitrary marginal measures $mu_g$. We prove in particular that the action is never of type II$_infty$ if $G$ is abelian and not locally finite, answering Krengels question for $G = mathbb{Z}$. When $G$ is locally finite, we prove that type II$_infty$ does arise. For arbitrary countable groups, we assume that the marginal measures stay away from $0$ and $1$. When $G$ has only one end, we prove that the Krieger type is always I, II$_1$ or III$_1$. When $G$ has more than one end, we show that other types always arise. Finally, we solve the conjecture of [VW17] by proving that a group $G$ admits a Bernoulli action of type III$_1$ if and only if $G$ has nontrivial first $L^2$-cohomology.
In this paper we study chaotic behavior of actions of a countable discrete group acting on a compact metric space by self-homeomorphisms. For actions of a countable discrete group G, we introduce local weak mixing and Li-Yorke chaos; and prove that local weak mixing implies Li-Yorke chaos if G is infinite, and positive topological entropy implies local weak mixing if G is an infinite countable discrete amenable group. Moreover, when considering a shift of finite type for actions of an infinite countable amenable group G, if the action has positive topological entropy then its homoclinic equivalence relation is non-trivial, and the converse holds true if additionally G is residually finite and the action contains a dense set of periodic points.
78 - Nolan R. Wallach 2018
The main result asserts: Let $G$ be a reductive, affine algebraic group and let $(rho ,V)$ be a regular representation of $G$. Let $X$ be an irreducible $mathbb{C}^{ times } G$ invariant Zariski closed subset such that $G$ has a closed orbit that has maximal dimension among all orbits (this is equivalent to: generic orbits are closed). Then there exists an open subset, $W$,of $X$ in the metric topology which is dense with complement of measure $0$ such that if $x ,y in W$ then $left (mathbb{C}^{ times } Gright )_{x}$ is conjugate to $left (mathbb{C}^{ times } Gright )_{y}$. Furthermore, if $G x$ is a closed orbit of maximal dimension and if $x$ is a smooth point of $X$ then there exists $y in W$ such that $left (mathbb{C}^{ times } Gright )_{x}$ contains a conjugate of $left (mathbb{C}^{ times } Gright )_{y}$. The proof involves using the Kempf-Ness theorem to reduce the result to the principal orbit type theorem for compact Lie groups.
In this article we review the question of constructing geometric quotients of actions of linear algebraic groups on irreducible varieties over algebraically closed fields of characteristic zero, in the spirit of Mumfords geometric invariant theory (G IT). The article surveys some recent work on geometric invariant theory and quotients of varieties by linear algebraic group actions, as well as background material on linear algebraic groups, Mumfords GIT and some of the challenges that the non-reductive setting presents. The earlier work of two of the authors in the setting of unipotent group actions is extended to deal with actions of any linear algebraic group. Given the data of a linearisation for an action of a linear algebraic group H on an irreducible variety $X$, an open subset of stable points $X^s$ is defined which admits a geometric quotient variety $X^s/H$. We construct projective completions of the quotient $X^s/H$ by considering a suitable extension of the group action to an action of a reductive group on a reductive envelope and using Mumfords GIT. In good cases one can also compute the stable locus $X^s$ in terms of stability (in the sense of Mumford for reductive groups) for the reductive envelope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا